Fabrication and Characterization of Sisal Cellulose Nanowhiskers

Article Preview

Abstract:

There is growing interest in cellulose nanowhiskers from renewable sources for several industrial applications. In this work, sisal cellulose nanowhiskers (SCNW) are produced from sisal fiber by the combinations of acid hydrolysis and dialysis treatment. The structure of SCNW is characterized by Fourier transform infrared spectroscopy (FTIR), the morphology of SCNW is observed using field emission scanning electron microscopy (FESEM), and the thermal properties of SCNW is investigated by differential thermogravimetric analysis (DTG). The FTIR study displays that the chemical structures of SCNW are consistent with those of cellulose, indicating the removal of most of hemicelluloses during the acid hydrolysis process. The DTG result suggests the initial decomposition temperature of SCNW is 280 °C and the terminal decomposition temperature is 356 °C, the residual rate is 10% or so, indicating favorable thermal performance. The SEM results show that the sisal cellulose microcrystals exhibit an average length of 50 μm and a diameter of 5~10 μm, and SCNW displays a diameter of 5~60 nm and a length of several micrometers, revealing that the size of SCNW is much smaller than that of cellulose microcrystal. All above results illustrate that SCNW has a great promise for many potential applications, such as pharmaceutical, liquid filtration, catalysts, bio-nanocomposites, and tissue engineering scaffolds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2706-2709

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.M. Teixeira, A.C. Correa, A. Manzoli, F.L. Leite, C.R. Oliveira and L.H.C. Mattoso: Cellulose Vol 17 (2010), p.595.

Google Scholar

[2] D. Klemm, B. Heublein, H. -P. Fink and A. Bohn: Angew. Chem. Int. Ed. Vol 44 (2005), p.3358.

Google Scholar

[3] S.M. Mukherjee and H.J. Woods: Biochim. Biophys. Acta Vol 10 (1953), p.499.

Google Scholar

[4] B. Wang, M. Sain, and K. Oksman: Appl. Compos. Mater. Vol 14 (2007), p.89.

Google Scholar

[5] J.N. Saddler, H.H. Brownell, L.P. Clermont and N. Levitin: Biotechnol. Bioeng. Vol 24 (1982), p.1389.

Google Scholar

[6] M.M.D.S. Lima, J.T. Wong, M. Paillet, R. Borsali and R. Pecora: Langmuir Vol 19 (2002), p.24.

Google Scholar

[7] M.M. de Souza Lima and R. Borsali: Langmuir Vol 18 (2002), p.992.

Google Scholar

[8] A. Alemdar and M. Sain: Bioresour. Technol. Vol 99 (2008), p.1664.

Google Scholar

[9] D.Y. Ye, D. Montane and X. Farriol: Carbohydr. Polym. Vol 61 (2005), p.446.

Google Scholar

[10] D.Y. Ye and X. Farriol: Cellulose Vol 12 (2005), p.507.

Google Scholar

[11] M. FitzPatrick, P. Champagne, M.F. Cunningham, R.A. Whitney, Bioresour. Technol., 101 (2010) 8915-8922.

Google Scholar

[12] A.G. M. N. Belgacem, Production, Chemistry and Properties of Cellulose-Based Materials, in: D. Plackett (Ed. ) New Materials for Sustanable Fims and Coatings, John Wiley & Sons Ltd. Chichester (UK), 2011, pp.151-178.

Google Scholar

[13] H.J. Prado, M.C. Matulewicz, Eur. Pol. J., 52 (2014) 53-75.

Google Scholar

[14] X. Dong, J.F. Revol and D. Gray: Cellulose Vol 5 (1998), p.19.

Google Scholar

[15] J. Araki, M. Wada, S. Kuga and T. Okano: Colloid Surf. A Vol 142 (1998), p.75.

Google Scholar

[16] S.C. Espinosa, T. Kuhnt, E.J. Foster and C. Weder: Biomacromolecules Vol 14 (2013), p.1223.

Google Scholar

[17] I. Filpponen and D.S. Argyropoulos : Biomacromolecules Vol 11443 (2010), p.1060.

Google Scholar

[18] S. Beck-Candanedo, M. Roman and D.G. Gray: Biomacromolecules Vol 6 (2005), P. 1048.

Google Scholar

[19] G. Siqueira, J. Bras and A. Dufresne : Biomacromolecules Vol 10 (2009), p.425.

Google Scholar

[20] J. Araki and S. Kuga: Langmuir Vol 17 (2001), p.4493.

Google Scholar

[21] M.N. Anglès and A. Dufresne : Macromolecules Vol 33 (2000), p.8344.

Google Scholar

[22] D.P. A.N. Frone, D. Donescu, C. I. Spataru, C. Radovici, R. Trusca and R. Somoghi: BioResources Vol 6 (2011), p.487.

DOI: 10.15376/biores.6.1.487-512

Google Scholar

[23] R.M. dos Santos, W.P.F. Neto, H.A. Siverio, D.F. Martins, N.O. Dantas and D. Pasquini: Industrial Crops and Products Vol 50 (2013), p.707.

Google Scholar