Microstructural Evolution and Mechanical Properties of Pure Magnesium during Multi-Axial Compression

Article Preview

Abstract:

The effects of multi-axial compression (MAC) on the microstructures and mechanical properties of pure magnesium were investigated. It has been shown that grain refinement and grain growth occurred simultaneously during the MAC process. After 5 MAC passes, the grain size is mainly distributed in the range of 5~25 μm. The hardness of the specimens increases with increasing the strain (MAC pass), with the increment at lower strain being more obvious than that at higher strain. Compression tests showed that the samples show significant difference in mechanical properties along different directions due to the texture development. With increasing the MAC pass, the texture has been weakened due to multi-axial deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2759-2764

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.L. Mordike and T. Ebert, Magnesium: Properties - Applications – Potential, Mater. Sci. Eng. A, 2001, 302, pp.37-45.

Google Scholar

[2] M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn, Acta Mater., 2004, 52(17), pp.5093-5103.

DOI: 10.1016/j.actamat.2004.07.015

Google Scholar

[3] A. Yamashita, Z. Horita, and T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A, 2001, 300(1-2), pp.142-147.

DOI: 10.1016/s0921-5093(00)01660-9

Google Scholar

[4] H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion, Scr. Mater., 2002, 46(12), pp.851-856.

DOI: 10.1016/s1359-6462(02)00064-7

Google Scholar

[5] W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 2003, 51(11), pp.3293-3307.

DOI: 10.1016/s1359-6454(03)00161-7

Google Scholar

[6] L. Jin, D. Lin, D. Mao, X. Zeng, and W. Ding, Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion, Mater. Lett., 2005, 59(18), pp.2267-2270.

DOI: 10.1016/j.matlet.2004.09.061

Google Scholar

[7] W.M. Gan, M.Y. Zheng, H. Chang, X.J. Wang, X.G. Qiao, K. Wu, B. Schwebke, and H.G. Brokmeier, Microstructure and tensile property of the ECAPed pure magnesium, J. Alloys Compd., 2009, 470(1-2), pp.256-262.

DOI: 10.1016/j.jallcom.2008.02.030

Google Scholar

[8] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann-Manuf. Tech., 2008, 57(2), pp.716-735.

DOI: 10.1016/j.cirp.2008.09.005

Google Scholar

[9] Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, and J. Hjelen, Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression, Scr. Mater., 2008, 58(4), pp.311-314.

DOI: 10.1016/j.scriptamat.2007.09.058

Google Scholar

[10] K. Edalati, A. Yamamoto, Z. Horita, and T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater., 2011, 64(9), pp.880-883.

DOI: 10.1016/j.scriptamat.2011.01.023

Google Scholar

[11] S. Yi, I. Schestakow and S. Zaefferer, Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium, Mater. Sci. Eng. A, 2009, 516(1-2), pp.58-64.

DOI: 10.1016/j.msea.2009.03.015

Google Scholar

[12] J. Liu, Q. Wang, H. Zhou, and W. Guo, Microstructure and mechanical properties of NZ30K magnesium alloy processed by repetitive upsetting, J. Alloys Compd., 2014, 589, pp.372-377.

DOI: 10.1016/j.jallcom.2013.12.008

Google Scholar

[13] X. Xu, Q. Zhang, N. Hu, Y. Huang, and T.G. Langdon, Using an Al-Cu binary alloy to compare processing by multi-axial compression and high-pressure torsion, Mater. Sci. Eng. A, 2013, 588, pp.280-287.

DOI: 10.1016/j.msea.2013.09.001

Google Scholar

[14] J.C. Tan and M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. Eng. A, 2003, 339(1-2), pp.124-132.

DOI: 10.1016/s0921-5093(02)00096-5

Google Scholar

[15] Z. Zhao, Q. Chen, C. Hu, and D. Shu, Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging, Mater. Des., 2009, 30(10), pp.4557-4561.

DOI: 10.1016/j.matdes.2009.04.023

Google Scholar

[16] W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing, Scr. Mater., 2002, 47(1), pp.39-44.

DOI: 10.1016/s1359-6462(02)00094-5

Google Scholar

[17] X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 2007, 23(1), pp.44-86.

DOI: 10.1016/j.ijplas.2006.03.005

Google Scholar

[18] R. Kaibyshev and O. Sitdikov, Dynamic recrystallization of magnesium at ambient temperature, Zeitschrift für Metallkunde, 1994, 85(10), pp.738-743.

DOI: 10.1515/ijmr-1994-851012

Google Scholar

[19] B. Wang, R. Xin, G. Huang, and Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A, 2012, 534, pp.588-593.

DOI: 10.1016/j.msea.2011.12.013

Google Scholar

[20] X.Y. Yang, Z.Y. Sun, and L. Zhang, Preparation of submicro and nanosized magnesium alloys by multiply compressed deformation, Acta Metall. Sin., 2010, 46(5), pp.607-612.

DOI: 10.3724/sp.j.1037.2009.00785

Google Scholar

[21] S.L. Cooling, J.F. Pashak, and L. Sturkey, Unique deformation and aging characteristics of certain magnesium-base alloys, Trans. ASM., 1959, 51(1), pp.94-107.

Google Scholar

[22] M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater., 2001, 49(19), pp.4025-4039.

DOI: 10.1016/s1359-6454(01)00300-7

Google Scholar

[23] W.J. Ai, G. Fang, J. Zhou, M.A. Leeflang, and J. Duszczyk, Effect of twinning on the deformation behavior of an extruded Mg-Zn-Zr alloy during hot compression testing, Mater. Sci. Eng. A, 2012, 556, pp.373-381.

DOI: 10.1016/j.msea.2012.06.101

Google Scholar

[24] H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu, Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy, Acta Mater., 2007, 55(3), pp.975-982.

DOI: 10.1016/j.actamat.2006.09.018

Google Scholar

[25] A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 2001, 49(7), pp.1199-1207.

DOI: 10.1016/s1359-6454(01)00020-9

Google Scholar

[26] M.D. Nave and M.R. Barnett, Microstructures and textures of pure magnesium deformed in plane-strain compression, Scr. Mater., 2004, 51(9), pp.881-885.

DOI: 10.1016/j.scriptamat.2004.07.002

Google Scholar