[1]
B.L. Mordike and T. Ebert, Magnesium: Properties - Applications – Potential, Mater. Sci. Eng. A, 2001, 302, pp.37-45.
Google Scholar
[2]
M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn, Acta Mater., 2004, 52(17), pp.5093-5103.
DOI: 10.1016/j.actamat.2004.07.015
Google Scholar
[3]
A. Yamashita, Z. Horita, and T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A, 2001, 300(1-2), pp.142-147.
DOI: 10.1016/s0921-5093(00)01660-9
Google Scholar
[4]
H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion, Scr. Mater., 2002, 46(12), pp.851-856.
DOI: 10.1016/s1359-6462(02)00064-7
Google Scholar
[5]
W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 2003, 51(11), pp.3293-3307.
DOI: 10.1016/s1359-6454(03)00161-7
Google Scholar
[6]
L. Jin, D. Lin, D. Mao, X. Zeng, and W. Ding, Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion, Mater. Lett., 2005, 59(18), pp.2267-2270.
DOI: 10.1016/j.matlet.2004.09.061
Google Scholar
[7]
W.M. Gan, M.Y. Zheng, H. Chang, X.J. Wang, X.G. Qiao, K. Wu, B. Schwebke, and H.G. Brokmeier, Microstructure and tensile property of the ECAPed pure magnesium, J. Alloys Compd., 2009, 470(1-2), pp.256-262.
DOI: 10.1016/j.jallcom.2008.02.030
Google Scholar
[8]
A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann-Manuf. Tech., 2008, 57(2), pp.716-735.
DOI: 10.1016/j.cirp.2008.09.005
Google Scholar
[9]
Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, and J. Hjelen, Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression, Scr. Mater., 2008, 58(4), pp.311-314.
DOI: 10.1016/j.scriptamat.2007.09.058
Google Scholar
[10]
K. Edalati, A. Yamamoto, Z. Horita, and T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater., 2011, 64(9), pp.880-883.
DOI: 10.1016/j.scriptamat.2011.01.023
Google Scholar
[11]
S. Yi, I. Schestakow and S. Zaefferer, Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium, Mater. Sci. Eng. A, 2009, 516(1-2), pp.58-64.
DOI: 10.1016/j.msea.2009.03.015
Google Scholar
[12]
J. Liu, Q. Wang, H. Zhou, and W. Guo, Microstructure and mechanical properties of NZ30K magnesium alloy processed by repetitive upsetting, J. Alloys Compd., 2014, 589, pp.372-377.
DOI: 10.1016/j.jallcom.2013.12.008
Google Scholar
[13]
X. Xu, Q. Zhang, N. Hu, Y. Huang, and T.G. Langdon, Using an Al-Cu binary alloy to compare processing by multi-axial compression and high-pressure torsion, Mater. Sci. Eng. A, 2013, 588, pp.280-287.
DOI: 10.1016/j.msea.2013.09.001
Google Scholar
[14]
J.C. Tan and M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. Eng. A, 2003, 339(1-2), pp.124-132.
DOI: 10.1016/s0921-5093(02)00096-5
Google Scholar
[15]
Z. Zhao, Q. Chen, C. Hu, and D. Shu, Microstructure and mechanical properties of SPD-processed an as-cast AZ91D+Y magnesium alloy by equal channel angular extrusion and multi-axial forging, Mater. Des., 2009, 30(10), pp.4557-4561.
DOI: 10.1016/j.matdes.2009.04.023
Google Scholar
[16]
W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing, Scr. Mater., 2002, 47(1), pp.39-44.
DOI: 10.1016/s1359-6462(02)00094-5
Google Scholar
[17]
X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 2007, 23(1), pp.44-86.
DOI: 10.1016/j.ijplas.2006.03.005
Google Scholar
[18]
R. Kaibyshev and O. Sitdikov, Dynamic recrystallization of magnesium at ambient temperature, Zeitschrift für Metallkunde, 1994, 85(10), pp.738-743.
DOI: 10.1515/ijmr-1994-851012
Google Scholar
[19]
B. Wang, R. Xin, G. Huang, and Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A, 2012, 534, pp.588-593.
DOI: 10.1016/j.msea.2011.12.013
Google Scholar
[20]
X.Y. Yang, Z.Y. Sun, and L. Zhang, Preparation of submicro and nanosized magnesium alloys by multiply compressed deformation, Acta Metall. Sin., 2010, 46(5), pp.607-612.
DOI: 10.3724/sp.j.1037.2009.00785
Google Scholar
[21]
S.L. Cooling, J.F. Pashak, and L. Sturkey, Unique deformation and aging characteristics of certain magnesium-base alloys, Trans. ASM., 1959, 51(1), pp.94-107.
Google Scholar
[22]
M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater., 2001, 49(19), pp.4025-4039.
DOI: 10.1016/s1359-6454(01)00300-7
Google Scholar
[23]
W.J. Ai, G. Fang, J. Zhou, M.A. Leeflang, and J. Duszczyk, Effect of twinning on the deformation behavior of an extruded Mg-Zn-Zr alloy during hot compression testing, Mater. Sci. Eng. A, 2012, 556, pp.373-381.
DOI: 10.1016/j.msea.2012.06.101
Google Scholar
[24]
H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu, Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy, Acta Mater., 2007, 55(3), pp.975-982.
DOI: 10.1016/j.actamat.2006.09.018
Google Scholar
[25]
A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 2001, 49(7), pp.1199-1207.
DOI: 10.1016/s1359-6454(01)00020-9
Google Scholar
[26]
M.D. Nave and M.R. Barnett, Microstructures and textures of pure magnesium deformed in plane-strain compression, Scr. Mater., 2004, 51(9), pp.881-885.
DOI: 10.1016/j.scriptamat.2004.07.002
Google Scholar