[1]
Xiaoping. Yang, Richard. Liu C, A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method, International Journal of Mechanical Sciences, 42 (2002) 703-23.
DOI: 10.1016/s0020-7403(02)00008-5
Google Scholar
[2]
J.C. Outeiro, J.C. Pina, R. M'Saoubi, F. Pusavec, I.S. Jawahir, Analysis of residual stresses induced by dry turning of difficult - to - machine materials, CIRP Annals – Manufacturing Technology, 57 (2008) 77-80.
DOI: 10.1016/j.cirp.2008.03.076
Google Scholar
[3]
D. Umbrello, J.C. Outeiro, R. M'Saoubi, A. D Jayal., I. S. Jawahir, A numerical model incorporating the microstructure alteration for predicting residual stresses in hard machining of AISI 52100 steel, CIRP Annals – Manufacturing Technology, 59 (2010).
DOI: 10.1016/j.cirp.2010.03.061
Google Scholar
[4]
Jiann-Cherng. Su, Keith A. Young, Kong Ma et al, Modeling of residual stresses in milling, International Journal of Advanced Manufacturing Technology, 65 (2013) 717-733.
Google Scholar
[5]
C.R. Liu, Y.B. Guo, Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer, International Journal of Mechanical Sciences, 42 (2000) 1069 – 86.
DOI: 10.1016/s0020-7403(99)00042-9
Google Scholar
[6]
J.C. Outeiro, D. Umbrello, R. M'Saoubi, Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel, International Journal of Machine Tools & Manufacture, 46 (2006) 1786 – 94.
DOI: 10.1016/j.ijmachtools.2005.11.013
Google Scholar
[7]
H. Dehmani, F. Salvatore, H. Hamdi, Numerical study of residual stress induced by multi-steps orthogonal cutting, Procedia the International Academy for Production Engineering, 8 (2013) 299-304.
DOI: 10.1016/j.procir.2013.06.106
Google Scholar
[8]
J. L. Li, L. L. Jing, M. Chen, An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11, Journal of Materials Processing Technology, 209 (2009) 4515-4520.
DOI: 10.1016/j.jmatprotec.2008.10.042
Google Scholar
[9]
D.W. Tang, C.Y. Wang, Y.N. Hu, Y.X. Song, Finite – Element Simulation of Conventional and High-Speed Peripheral Milling of Hardened Mold Steel, Metallurgical and Materials Transactions A, 40 (2009) 3245-57.
DOI: 10.1007/s11661-009-9983-1
Google Scholar
[10]
D.W. Tang, C.Y. Wang, Y.N. Hu, Y.X. Song, Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique, Fourth International Conference on Experimental Mechanics, 7522 (2010) 75226B-1.
DOI: 10.1117/12.851262
Google Scholar
[11]
Xiao Wang, Shubin Lu, Chuanyu Gao, Friction analysis and finite element simulation of high-speed metal cutting, Lubication Engineering, 01 (2007) 129-131.
Google Scholar
[12]
Dewen Tang, Chengyong Wang, Yingning Hu, Yuexian Song, Finite Element Simulation of Chip Formation during High-Speed Peripheral Milling of Hardened Mold Steel, Key Engineering Materials, 443 (2010) 274-78.
DOI: 10.4028/www.scientific.net/kem.443.274
Google Scholar
[13]
DEFORM2D, User Manual V 8. 1, Scientific Forming Technologies Corporation, Columbus, OH, USA, (2003).
Google Scholar
[14]
Zone-Ching Lin, Yau-Yi Lin, C. R. Liu, Effect of thermal load and mechanical load on the residual stress of a machined workpiece, International Journal of Mechanical Sciences, 33(4) (1991) 263-278.
DOI: 10.1016/0020-7403(91)90040-a
Google Scholar
[15]
K.C. Ee, O.W. Dillon Jr., I.S. Jawahir, Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius, International Journal of Mechanical Sciences, 47 (2005) 1611-1628.
DOI: 10.1016/j.ijmecsci.2005.06.001
Google Scholar