Photocatalytic Degradation of Methyl Orange by TiO2/Schorl Photocatalyst: Kinetics and Thermodynamics

Article Preview

Abstract:

An active dye, Methyl Orange (MO) was employed as the target pollutant to evaluate the photocatalytic activity of TiO2/schorl composite and the kinetics and thermodynamics of this process was emphasized in this work. Langmuir–Hinshelwood kinetic model was employed for the kinetic studies and the results revealed that the process of MO photocatalytic discoloration by TiO2/schorl composite followed one order reaction kinetic equation under different conditions. The reaction rate constant (k) increased with initial MO concentration decreasing. When the catalyst dosage or solution pH increased, k values increased and then decreased. The possible reasons for these phenomena were discussed. Finally, the thermodynamic parameters ΔG, ΔH, ΔS were obtained by the classical Van't Hoff equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2789-2792

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Merouani, O. Hamdaoui, F. Saoudi, et al. J. Chem. Engin, 2010, 158 (3): 550-557.

Google Scholar

[2] J. H. Sun, S. P. Sun, J. Y. Sun, et al. Ultrasonics Sonochem., 2007, 14 (6): 761-766.

Google Scholar

[3] C. Martínez-Huitle, A. E. Brillas. Appl. Catal. B: Environ, 2009, 87: 105-112.

Google Scholar

[4] J. Garcıa-Montano, L. Perez-Estrada, I. Oller, et al. J. Photochem. Photobiol. A, 2008, 195: 205-211.

Google Scholar

[5] A. R. Khataee, M. Zarei, L. Moradkhannejhad. Desalination, 2010, 258: 112-119.

Google Scholar

[6] M. R. Hoffmann, S. T. Martin, W. Choi, et al. Chem. Rev, 1995, 95: 69-96.

Google Scholar

[7] U. I. Gaya, A. H. Abdullah. J. Photochem. Photobiol. C, 2008, 9: 1-12.

Google Scholar

[8] A. A. Ashkarran, S. M. Aghigh, M. Kavianipour, et al. Current App. Phy., 2011, 11: 1048-1055.

Google Scholar

[9] R. F. Chen, C. X Zhang, J. Deng, et al. Metall. Mater., 2009, 16: 220-228.

Google Scholar

[10] J. Wang, L. Q. Jing, L. P. Xue, et al. J. Hazard. Mater., 2008, 160: 208-212.

Google Scholar

[11] A. Vijayabalan, K. Selvam, R. Velmurugan, et al. J. Hazard. Mater., 2009 7: 8-9.

Google Scholar

[12] Y. H Lin, T. C Chiu, H. T Hsueh, et al. App. Surf. Sci., 2011, 258: 1581-1586.

Google Scholar

[13] S. Liu, X. Y Chen. J. Hazard. Mater., 2008, 152: 48-55.

Google Scholar

[14] S. H. Song, M. Kang. J. Indust. Engin. Chem., 2008, 14: 785-791.

Google Scholar

[15] R. A. Valentine, D. Manikandan, D. Divakar, et al. J. Hazard. Mater., 2007, 147: 906-913.

Google Scholar