The Direct Observation of Fullerene-Like/Onions Dispersed in Amorphous Hydrogenated Carbon Films Deposited by Reactive Magnetron Sputtering of Ni

Article Preview

Abstract:

Amorphous hydrogenated carbon films deposited by reactive magnetron sputtering showed that nanoNi3C crystals, fullerene-like/onions structures as well as small curved graphenes dispersed in amorphous carbon matrix. It is believed that the migration of Ni atoms leads to the formation of the fullerene-like/onion structures as well as small curved graphenes at high pulsed bias.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2950-2954

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Nilsson, F. Svahn, U. Wiklund, S. Hogmark, Wear 254 (2003) p.1084.

Google Scholar

[2] R.G. Agostino, et al., Phys. Rev. B 68 (2003) p.035413.

Google Scholar

[3] I. Dahan, U. Admon, N. Frage, J. Sariel, M.P. Dariel, Thin Solid Films 377-378 (2000) p.687.

DOI: 10.1016/s0040-6090(00)01282-7

Google Scholar

[4] M. Balden, B.T. Cieciwa, I. Quintana, E. de Juan Pardo, F. Koch, M. Sikora, B. Dubiel Metal-doped carbon films obtained by magnetron sputtering Surf. Coat. Tech. 200 (2005) p.413.

DOI: 10.1016/j.surfcoat.2005.02.218

Google Scholar

[5] G. Abrasonis, M. Krause, A. Mucklich, K. Sedlackova, G. Radno czi, U. Kreissig, A. Kolitsch, W. Moller, Carbon 45 (2007) p.2995.

Google Scholar

[6] B. Somnath , S. J. Henley, D. Lock, N. P. Blanchard, and S. R. P. Silva, Appl. Phys. Lett. 89 (2006) p.022113.

Google Scholar

[7] G. Sreenivas, S. S. Ang, I. Fritsch, W.D. Brown, Greg A. Gerhardt, and D. J. Woodward, Anal. Chem. 68 (11) (1996) p.1858–1864.

DOI: 10.1021/ac9508816

Google Scholar

[8] F. Y. Chuang, C. Y. Sun1, T. T. Chen, and I. N. Lin, Appl. Phys. Lett. 69 (1996) p.3504.

Google Scholar

[9] S. J. Harris, A. M. Weiner and W. -J. Meng, Wear 211 (1997) p.208.

Google Scholar

[10] T. Cabioch, M. Denanot, and A. Naudon, Appl. Phys. Lett. 74 (1999) p.123372.

Google Scholar

[11] T. Kimura, H. Ago, M. Tobita, S . Ohshima, M. Kyotani and M. Yumura, Adv. Mater. 14 (2002) p.1380.

DOI: 10.1002/1521-4095(20021002)14:19<1380::aid-adma1380>3.0.co;2-v

Google Scholar

[12] N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman and J. -E. Sundgren, Phys. Rev. B 59 (1999) p.5162.

Google Scholar

[13] D. Roy, M. Chhowalla, N. Hellgren, and G. A. J. Amaratunga, Phys Rev B 70 (2004) p.035046.

Google Scholar

[14] H. Sjöström, S Stafström, M Boman and J. E. Sundgren, Phys. Rev. Lett. 75 () 1336.

Google Scholar

[15] N. Hellgren, T. Berlind, G. Gueorguiev, M. P. Johansson, S. Stafström and L. Hultman, Mater. Sci. Eng. B 113 (2004) p.242.

Google Scholar

[16] A. Furlan, G. K. Gueorguiev, Z. Czigány, H. Högberg, S. Braun, S. Stafström and L. Hultman, phys. stat. sol. 2 (2008) p.191.

DOI: 10.1002/pssr.200802077

Google Scholar

[17] Q. Wang, C. Wang, Z. Wang, J. Zhang and D. He, Appl. Phys. Lett. 91 (2007) p.141902.

Google Scholar

[18] C. Wang, S. Yang, Q. Wang, Z. Wang and J. Zhang, Nanotechnology 19 (2008) 225709.

Google Scholar

[19] P Wang, X Wang, W Liu and J Zhang J. Phys. D: Appl. Phys. 41 (2008) p.085401.

Google Scholar

[20] J. G. Buijnsters, M. Camero, R. Gago, A. R. Landa-Canovas, C. Gómez-Alelxandre and I. Jiménez, Appl. Phys. Lett. 92 (2008) 14920.

Google Scholar

[21] P. Wang, X. Wang, B. Zhang and W. Liu J. Non-Cryst. Solids 355 (2009) 1742.

Google Scholar

[22] W. Qian, T. Liu, Z. Wang, H. Yu, Z. Li, F. Wei, G. Luo Carbon 41 (2003) p.2487–2493.

Google Scholar

[23] J. Vacik, H. Naramoto, K. Narumi, S. Yamamoto, H. Abe, Nucl. Instrum. Meth. B 219-220 (2004) p.862.

Google Scholar

[24] V. Sunny, D. S. Kumar, Y. Yoshida, M. Makarewicz,W. Tabisd, M. R. Anantharamanm, carbon 48 (2010) p.1643.

Google Scholar

[25] Gy. J. Kovács, M. Veres, M. Koós, G. Radnóczi, Thin Solid Films 516 (2008) p.7910–7915.

DOI: 10.1016/j.tsf.2008.04.081

Google Scholar

[26] B. Zhang, Z. Wang, J. Zhang, Q. Wang, Y. Zhou. Nanostructure carbon films dependent on the reactive magnetron sputtering of Ni target and their mechanical and tribological properties. Submitted to JAP, under revise.

Google Scholar

[27] A. M. Matus and H. Kuzmany Appl. Phys. A 56 (1993) p.241.

Google Scholar

[28] Z. -H. Dong, P. Zhou, J. M. Holden and P. C. Eklund Phys. Rev. B 48 (1993) p.2862.

Google Scholar

[29] P. Scharff, K. Risch, L. Carta-Abelmann, I. M. Dmytruk, M.M. Bilyi, O. A. Golub, A. V. Khavryuchenko, E. V. Buzaneva, V. L. Aksenov, M. V. Avdeev, Yu. I. Prylutskyy and S. S. Durov, Carbon 42 (2004) p.1203–1206.

DOI: 10.1016/j.carbon.2003.12.053

Google Scholar

[30] C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus and M. A. Piment, Phys. Rev. Lett. 93 (2004) p.147406.

Google Scholar

[31] L. Alvarez, A. Righi, S. Rols, E. Anglaret and J. L. Sauvajol, Chem. Phys. Lett. 320 (2000) p.411.

Google Scholar

[32] K. Shen, S. Curran, H. Xu, S. Rogelj, Y. Jiang, J. Dewald and T. Pietrass, J. Phys. Chem. B, 109 (10) (2005) p.4455–4463.

DOI: 10.1021/jp045046j

Google Scholar

[33] X. Zhao, Y. Ando , L. -C. Qin, H. Kataur, Y. Maniw, R. Saito, Chem. Phys. Lett. 361 (2002) p.169–174.

Google Scholar

[34] E. Cazzanelli, L. Caputi, M. Castriota, A. Cupolillo, C. Giallombardo and L. Papagno, Surf. Sci. 601 (2007) 3926.

DOI: 10.1016/j.susc.2007.04.153

Google Scholar

[35] A. P. Burden, J. V. Anguita and S. R. P. Silva, Thin solid films 332 (1998) p.252.

Google Scholar

[36] H Ishida, N Satake, G-H Jeong, Y Abe, T Hirata, Hatakeyama and K Tohji, Thin Solid Films 407 (2002) p.26.

DOI: 10.1016/s0040-6090(02)00007-x

Google Scholar

[37] L Chow, H Wang, S Kleckley, T K Daly and P R Buseck, Appl. Phys. Lett. 66 (1995) p.430.

Google Scholar