Design and Implementation of Mechatronic Prosthesis for Amputees with Trans-Humeral Amputation

Article Preview

Abstract:

The research project started with the need to found a viable solution to replace the upper extremities with artificial extremities, which have been affected by explosives such as land mines. For that purpose, it was essential the appliance of the design in the field of medicine for the construction of the anthropomorphic prosthesis. In order to do so, the concepts of biomechanics of the arm, including hand, as well as the types of handgrip was explored. According to the above, the concepts, moment, power, torque, four bar analysis were addressed, identifying the four bar mechanism and applying it on the design for the transmission of the movement in the phalanges..

You might also be interested in these eBooks

Info:

Periodical:

Pages:

781-784

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Robotics y M. C, Two-arm-system for investigation of two handed manipulation, (2013).

Google Scholar

[2] D. Robotics y M. Center, Variable Stiffness Actuators (VSA) The Hand Arm System is equipped with 3 types of Variable Stiffness, (2013).

Google Scholar

[3] N. Aeronautics y S. Administration, Robonaut 2, (2013).

Google Scholar

[4] «Arm Prosthetic Device». (2010).

Google Scholar

[5] D. research, The DEKA Arm, (2010).

Google Scholar

[6] K. DESIGN, DARPA Revolutionizing Prosthetics 2009, (2010).

Google Scholar

[7] ELUMOTION, Single digit featuring either 1 or 2 degrees of freedom, (2010).

Google Scholar

[8] P. s. r. l, (2013).

Google Scholar

[9] RLSSTEEPER, (2013).

Google Scholar

[10] P. de Accion Integral contra Minas Antipersonal.

Google Scholar

[11] D. Knudson, Fundamentals of Biomechanics, 2° ed., , Ed., Springer, 2007, pp.29-36.

Google Scholar

[12] R. C. Miralles, Biomecánica clínica del aparato locomotor, M. S.A., Ed., Masson, (2000).

Google Scholar

[13] J. Sánchez-Lacuesta, Biomecanica de la Marcha Humana Normal y Patologica, G. Valenciana, Ed., Instituto de Biomecanica de Barcelona, España, (1993).

Google Scholar

[14] R. Drillis, R. Contini y M. Maurice Bluestein, Artificial Limbs, p.44, (1966).

Google Scholar

[15] M. Nordin y V. Frankel, Biomecánica Básica del Sistema Musculoesquelético: Biomecánica de la muñeca y de la mano, McGraw Hill Interamericana, 2004, pp.370-398.

Google Scholar

[16] M. Batmanabane y S. Malathi, «Movements at the carpometacarpal and metacarpophalangeal joints of the hand and their effect on the dimensions of the articular ends of the metacarpal bones, » The Anatomical Record, vol. 213, nº 1, pp.102-110, (1985).

DOI: 10.1002/ar.1092130114

Google Scholar

[17] J. Shigley y J. Uicker, Teoría de Máquinas y Mecanismos, McGraw Hill, (1988).

Google Scholar

[18] E. P. Flores, R. P. Quintero, O. A. Sánchez, P. N. Suárez y M. M. Vilchis, «Diseño del mecanismo actuador de un dedo robot antropomórfico, » Revista Facultad de Ingeniería Universidad de Antioquia, vol. 58, pp.153-162, (2011).

DOI: 10.18359/rcin.283

Google Scholar