[1]
Avedesian M M, Baker H. ASM specialty handbook: Magnesium and magnesium alloys [M]. ASM International, (1999).
Google Scholar
[2]
P G Sanders, J S Keske, K H Leogn, G Komecki. High power Nd: YAG and CO2 laser welding of magnesium [J]. Journal of Laser Applications, 1999, 11(2) 96-103.
DOI: 10.2351/1.521885
Google Scholar
[3]
C Potzies, K U Kainer. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004, 6 (5) 281-289.
DOI: 10.1002/adem.200400021
Google Scholar
[4]
S Hasegawa, Y Tsuchida, H Yano, M Matsui. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue, 2007, 29 (9-11) 1839-1845.
DOI: 10.1016/j.ijfatigue.2006.12.003
Google Scholar
[5]
L Commin, M Dumont, R Rotinat, F Pierron, Jean-Eric Masse, L Barrallier. Texture evolution in Nd: YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties[J]. Materials Science and Engineering A, 2011, 528 (4-5) 2049-(2055).
DOI: 10.1016/j.msea.2010.11.061
Google Scholar
[6]
C Blawert, N Hort, K V Kainer. Automotive application alloys, Transactions- Indian Institute of Metals 57 (2004) 397-408.
Google Scholar
[7]
H Zhang, S B Lin, J C Feng, Sh L Ma. Defects Formation Procedure and Mathematic Model for Defect Free Friction Stir Welding of Magnesium Alloy[J]. Materials and Design. 2006, 27 805-809.
DOI: 10.1016/j.matdes.2005.01.016
Google Scholar
[8]
R S Coelho, A Kostka, H Pinto, S Riekehrb, M Kocak, A R Pyzalla. Microstructure and Mechanical Properties of Magnesium Alloy AZ31B Laser Beam Welds[J]. Materials Science and Engineering A, 2008, 485 (1-2) 20-30.
DOI: 10.1016/j.msea.2007.07.073
Google Scholar
[9]
D Q Sun, B Lang, D X Sun, J B Li. Microstructures and mechanical properties of resistance spot welded magnesium alloy joints[J]. Materials Science and Engineering A, 2007, 460-461 494-498.
DOI: 10.1016/j.msea.2007.01.073
Google Scholar
[10]
G Padmanaban, V Balasubramanian, J K Sarin Sundar. Influences of Welding Processes on Microstructure Hardness, and Tensile Properties of AZ31B Magnesium Alloy[J]. Journal of Materials Engineering and Performance, 2010, 19 (2) 155-165.
DOI: 10.1007/s11665-009-9389-7
Google Scholar
[11]
G Padmanaban, V Balasubramanian, G Madhusudhan Reddyb. Fatigue crack growth behaviour of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Journal of Materials Processing Technology, 2011, 211 (7) 1224-1233.
DOI: 10.1016/j.jmatprotec.2011.02.003
Google Scholar
[12]
G Padmanaban, V Balasubramanian. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Materials Chemistry and Physics, 2011, 125 (3) 686-697.
DOI: 10.1016/j.matchemphys.2010.09.072
Google Scholar
[13]
ASTM International standard, E112–04, Standard Test Methods for Determining Average Grain Size, 2006, p.13.
Google Scholar
[14]
S Guldberg, N Ryum. Microstructure and crystallographic orientation relationship in directionally solidified Mg–Mg17Al12-eutectic [J]. Materials Science and Engineering A, 2000, 289 (1-2) 143-150.
DOI: 10.1016/s0921-5093(00)00945-x
Google Scholar
[15]
G Padmanaban, V Balasubramanian. Fatigue performance of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Materials and Design, 2010, 31 (8) 3724-3732.
DOI: 10.1016/j.matdes.2010.03.013
Google Scholar
[16]
G E Dieter. Mechanical metallurgy. Tata McGraw Hill: New York; (1988).
Google Scholar
[17]
H X Zhang, W X Wang, Y H Wei, et al. Fatigue fracture mechanism of AZ31B magnesium alloy and its welded joint[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(11) 1225-1233.
DOI: 10.1016/s1003-6326(11)60846-7
Google Scholar