Review the Effect of Welding Processes on the Comprehensive Mechanical Properties of Magnesium Alloy Joints

Article Preview

Abstract:

In this paper, the effect of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on comprehensive mechanical properties of AZ31B magnesium alloy was reviewed. Among the three different welding processes, the LBW joints showed superior comprehensive properties to FSW and PCGTAW joints. The formation of very fine grains in weld region, higher fusion zone hardness, uniformly distributed finer precipitates were the main reasons for superior comprehensive mechanical performance of LBW joints compared to PCGTAW and FSW joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-187

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Avedesian M M, Baker H. ASM specialty handbook: Magnesium and magnesium alloys [M]. ASM International, (1999).

Google Scholar

[2] P G Sanders, J S Keske, K H Leogn, G Komecki. High power Nd: YAG and CO2 laser welding of magnesium [J]. Journal of Laser Applications, 1999, 11(2) 96-103.

DOI: 10.2351/1.521885

Google Scholar

[3] C Potzies, K U Kainer. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004, 6 (5) 281-289.

DOI: 10.1002/adem.200400021

Google Scholar

[4] S Hasegawa, Y Tsuchida, H Yano, M Matsui. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue, 2007, 29 (9-11) 1839-1845.

DOI: 10.1016/j.ijfatigue.2006.12.003

Google Scholar

[5] L Commin, M Dumont, R Rotinat, F Pierron, Jean-Eric Masse, L Barrallier. Texture evolution in Nd: YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties[J]. Materials Science and Engineering A, 2011, 528 (4-5) 2049-(2055).

DOI: 10.1016/j.msea.2010.11.061

Google Scholar

[6] C Blawert, N Hort, K V Kainer. Automotive application alloys, Transactions- Indian Institute of Metals 57 (2004) 397-408.

Google Scholar

[7] H Zhang, S B Lin, J C Feng, Sh L Ma. Defects Formation Procedure and Mathematic Model for Defect Free Friction Stir Welding of Magnesium Alloy[J]. Materials and Design. 2006, 27 805-809.

DOI: 10.1016/j.matdes.2005.01.016

Google Scholar

[8] R S Coelho, A Kostka, H Pinto, S Riekehrb, M Kocak, A R Pyzalla. Microstructure and Mechanical Properties of Magnesium Alloy AZ31B Laser Beam Welds[J]. Materials Science and Engineering A, 2008, 485 (1-2) 20-30.

DOI: 10.1016/j.msea.2007.07.073

Google Scholar

[9] D Q Sun, B Lang, D X Sun, J B Li. Microstructures and mechanical properties of resistance spot welded magnesium alloy joints[J]. Materials Science and Engineering A, 2007, 460-461 494-498.

DOI: 10.1016/j.msea.2007.01.073

Google Scholar

[10] G Padmanaban, V Balasubramanian, J K Sarin Sundar. Influences of Welding Processes on Microstructure Hardness, and Tensile Properties of AZ31B Magnesium Alloy[J]. Journal of Materials Engineering and Performance, 2010, 19 (2) 155-165.

DOI: 10.1007/s11665-009-9389-7

Google Scholar

[11] G Padmanaban, V Balasubramanian, G Madhusudhan Reddyb. Fatigue crack growth behaviour of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Journal of Materials Processing Technology, 2011, 211 (7) 1224-1233.

DOI: 10.1016/j.jmatprotec.2011.02.003

Google Scholar

[12] G Padmanaban, V Balasubramanian. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Materials Chemistry and Physics, 2011, 125 (3) 686-697.

DOI: 10.1016/j.matchemphys.2010.09.072

Google Scholar

[13] ASTM International standard, E112–04, Standard Test Methods for Determining Average Grain Size, 2006, p.13.

Google Scholar

[14] S Guldberg, N Ryum. Microstructure and crystallographic orientation relationship in directionally solidified Mg–Mg17Al12-eutectic [J]. Materials Science and Engineering A, 2000, 289 (1-2) 143-150.

DOI: 10.1016/s0921-5093(00)00945-x

Google Scholar

[15] G Padmanaban, V Balasubramanian. Fatigue performance of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints[J]. Materials and Design, 2010, 31 (8) 3724-3732.

DOI: 10.1016/j.matdes.2010.03.013

Google Scholar

[16] G E Dieter. Mechanical metallurgy. Tata McGraw Hill: New York; (1988).

Google Scholar

[17] H X Zhang, W X Wang, Y H Wei, et al. Fatigue fracture mechanism of AZ31B magnesium alloy and its welded joint[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(11) 1225-1233.

DOI: 10.1016/s1003-6326(11)60846-7

Google Scholar