Electronic Structure and Optical Properties of Cu-Doped SnO2

Article Preview

Abstract:

based on Density Functional Theory, we investigated the optical structures and the electronic properties of Cu doped SnO2 with density of 12.5%, including band structure, the density of state (dos), Dielectric function and optical absorption spectrum. The results show that Fermi level access conduction band gradually with the doped density. It has enhanced the electrical and metal property of material. The peaks of reflectivity spectrum and absorption spectrum correspond density of state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-23

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, (1966).

Google Scholar

[2] F.J. Arlinghaus, Journal of Physics and Chemistry of Solids 35 (1974) 931.

Google Scholar

[3] G. Korotcenkov, V. Brynzari, S. Dmitriev, Materials Science and Engineering B 56 (1999) 195–204.

Google Scholar

[4] B.W. Licznercki, et al., Sensors and Actuators B 103 (2004) 69–75.

Google Scholar

[5] G. Jimenez Cadena, J. Riu, F.X. Rius, Gas sensors based on nanostructured materials, Analyst 132 (2007) 1083–1099.

DOI: 10.1039/b704562j

Google Scholar

[6] M. Batzill, U. Diedold, Progress in Surface Science 79 (2005) 47.

Google Scholar

[7] Y. Lee, K. Lee, D. Lee, Y. Jeong, H.S. Lee, Y. Choa, Current Applied Physics 9 (2009) 579.

Google Scholar

[8] D.F. Cox, T.B. Fryberger, S. Semancik, Physical Review B 38 (1988) (2072).

Google Scholar

[9] I. Manassidis, J. Goniakowski, L.N. Kantorovich, M.J. Gillan, Surface Science 339 (3) (1995) 258–271.

DOI: 10.1016/0039-6028(95)00677-x

Google Scholar

[10] E. Elangovan, K.K. Ramesh, K. Ramamurthi, Solid State Communications 130 (2004) 523–527.

Google Scholar

[11] G. Korotcenkov, et al., Thin Solid Films 467 (2004) 209–214.

Google Scholar

[12] Guoe Cheng, et al., Journal of Crystal Growth 309 (2007) 53–59.

Google Scholar

[13] J. Montero, J.C. Herrero, C. Guillén, Solar Energy Materials & Solar Cells 94 (2010) 612–616.

DOI: 10.1016/j.solmat.2009.12.008

Google Scholar

[14] K.C. Mishra, K.H.P.C. Johnson, Schmidt Physical Review B 51 (20) (1995) 13972.

Google Scholar

[15] Guoqiang Qin, et al., Thin Solid Films 517 (2009) 3345–3349.

Google Scholar

[16] Jian Xu, Shuiping Huang, Zhanshan Wang, Solid State Communications 149 (2009) 527–531.

Google Scholar

[17] Yaming Liu. Henan Institute of science and technology journal(2011) 78-81.

Google Scholar

[18] Xuechu Shen. Spectroscopy and optical properties of semiconductor. science publishing company (2002).

Google Scholar

[19] Yuepin Du, Jingchao Chen, Jing Feng. Mechanical Properties and Electronic Structure of Various SnO2 Crystal Structures. Acta Phys. -Chim., 2009, 25(2): 278-284.

Google Scholar

[20] Launay M, Boucher F, Motrsu P. Evidence of a rutile-phase characteristic peak in low-energy loss spectra. Phys Rev B, 2004, 69: 035101.

DOI: 10.1103/physrevb.69.035101

Google Scholar