Comparative Study on the Microstructure and Photoluminescence Properties of SnO2 Nano Particles Prepared by Different Methods

Article Preview

Abstract:

This study presents comparisons between the morphologies and photoluminescence properties of tin oxide (SnO2) nanoparticles prepared by two methods, namely the sol gel and the co-precipitation methods. The characteristics of the particles were analyzed using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The particles prepared using the sol-gel method have a finer particle size and more spherical shape. However, no significant difference was observed in terms of morphology and homogeneity in the samples produced by either the co-precipitation or sol-gel methods. In contrast, the photoluminescence study shows that the emission peak for powder prepared using the sol-gel method was higher than that of the co-precipitation method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-136

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Choi, J. Y., & Oh, T. S. CO sensitivity of La2O3-doped SnO2 thick film gas sensor. Thin Solid Films, 547, 230-234(2013).

DOI: 10.1016/j.tsf.2013.02.039

Google Scholar

[2] Choudhury, C. A. B. S., & Girija, K. G. Reliability studies of highly sensitive and specific multi-gas sensor based on nanocrystalline SnO2 film. Sensors and Actuators (2014).

DOI: 10.1016/j.snb.2013.11.118

Google Scholar

[3] Lee, Y. -I., Lee, K. -J., Lee, D. -H., Jeong, Y. -K., Lee, H. S., & Choa, Y. -H. Preparation and gas sensitivity of SnO2 nanopowder homogenously doped with Pt nanoparticles. Current Applied Physics, 9, S79-S81. Chemical, 193, 484-491. (2009).

DOI: 10.1016/j.cap.2008.08.024

Google Scholar

[4] Parthibavarman, M., Renganathan, B., & Sastikumar, D. Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Current Appl Phys, 13(7), 1537-1544. (2013).

DOI: 10.1016/j.cap.2013.05.016

Google Scholar

[5] Vilà, A., Gomez, A., Portilla, L., & Morante, J. R. Influence of In and Ga additives onto SnO2 inkjet-printed semiconductor. Thin Solid Films, 553, 118-122. (2014).

DOI: 10.1016/j.tsf.2013.12.044

Google Scholar

[6] Zhuo, M., Chen, Y., Sun, J., Zhang, H., Guo, D., Zhang, H., et al. Humidity sensing properties of a single Sb doped SnO2 Nano wire field effect transistor. Sensors and Actuators B: Chemical, 186, 78-83. (2013).

DOI: 10.1016/j.snb.2013.05.043

Google Scholar

[7] Duverneuil, P., Maury, F., Pebere, N., Senocq, F., & Vergnes, H. Chemical vapor deposition of SnO2 coatings on Ti plates for the preparation of electrocatalytic anodes. Surface and Coatings Tech, 151–152, 9-13. (2002).

DOI: 10.1016/s0257-8972(01)01618-8

Google Scholar

[8] Zhu, Y., Wang, L., Huang, G., Chai, Y., Zhai, X., & Huang, W. Luminescent and photocatalytic properties of hollow SnO2 nanospheres. Mat. Sci and Eng: B, 178(10), 725-729. (2013).

DOI: 10.1016/j.mseb.2013.03.006

Google Scholar

[9] Bastami, H., & Taheri-Nassaj, E. Synthesis of nanosized (Co, Nb, Sm)-doped SnO2 powders using co-precipitation method. J of Alloys and Comp, 495(1), 121-125. (2010).

DOI: 10.1016/j.jallcom.2010.01.099

Google Scholar

[10] Fu, C., Wang, J., Yang, M., Su, X., Xu, J., & Jiang, B. Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method. J. of Non-Crystalline Solids, 357(3), 1172-1176 (2011).

DOI: 10.1016/j.jnoncrysol.2010.10.019

Google Scholar

[11] Varshney, D., & Verma, K. Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. of Mol Structure, 1034, 216-222. (2013).

DOI: 10.1016/j.molstruc.2012.10.049

Google Scholar

[12] Bajpai, N., Khan, S. A., Kher, R. S., Bramhe, N., Dhoble, S. J., & Tiwari, A. Thermoluminescence investigation of sol–gel derived and γ-irradiated SnO2: Eu3+ nanoparticles. J. Luminescence, 145, 940-943. (2014).

DOI: 10.1016/j.jlumin.2013.09.020

Google Scholar

[13] Liu, X. M., Wu, S. L., Chu, P. K., Zheng, J., & Li, S. L. Characteristics of nano Ti-doped SnO2 powders prepared by sol–gel method. Mat Sci and Eng A, 426(1-2), 274-277. (2006).

DOI: 10.1016/j.msea.2006.04.032

Google Scholar

[14] Zhong, X., Yang, B., Zhang, X., Jia, J., & Yi, G. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology, 10(3), 365-370. (2012).

DOI: 10.1016/j.partic.2011.09.005

Google Scholar

[15] Firooz, A. A., Hyodo, T., Mahjoub, A. R., Khodadadi, A. A., & Shimizu, Y. Synthesis and gas-sensing properties of nano- and meso-porous MoO3-doped SnO2. Sensors and Actuators B: Chemical, 147(2), 554-560. (2010).

DOI: 10.1016/j.snb.2010.03.021

Google Scholar

[16] Yuan, L., Guo, Z. P., Konstantinov, K., Liu, H. K., & Dou, S. X. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. J. of Power Sources, 159(1), 345-348. (2006).

DOI: 10.1016/j.jpowsour.2006.04.048

Google Scholar

[17] Yuan, L., Konstantinov, K., Wang, G. X., Liu, H. K., & Dou, S. XNano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries. J. Power Sources, 146(1-2), 180-184. (2005).

DOI: 10.1016/j.jpowsour.2005.03.008

Google Scholar

[18] Cao, X., Shu, Y. -c., Hu, Y. N, Li, G. -p, & Liu, C. Integrated process of large-scale and size-controlled SnO2 nanoparticles by hydrothermal method. Transactions of Nonferrous Metals Society of China, 23(3), 725-730. (2013).

DOI: 10.1016/s1003-6326(13)62521-2

Google Scholar

[19] Talebian, N., & Jafarinezhad, F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceramics International, 39(7), 8311-8317. (2013).

DOI: 10.1016/j.ceramint.2013.03.101

Google Scholar

[20] Asama. N. Naje , Azhar S. Norry, Abdulla. M. Suhail, Preparation and Characterization of SnO2 Nanoparticles , Journal of IJIRSET, Vol. 2, Issue 12, (2013).

Google Scholar

[21] Aziz . Madzlan, Abbas Saad Sabe , Wan Rosemaria, Wan Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method, Materials Let. 91 . 31–34. (2013).

DOI: 10.1016/j.matlet.2012.09.079

Google Scholar

[22] Rammamorthy R, M. K Kennedy, H. Nienhaus, Sensors Actuators B 88, 281-285. (2002).

Google Scholar

[23] Nehru L. C, Swaminathan. V, Sanjeeviraja. C, Photoluminescence Studies on Nanocrystalline Tin Oxide Powder for Optoelectronic Devices, American J. Mat Sci, , 2(2): 6-10, ( 2012).

DOI: 10.5923/j.materials.20120202.02

Google Scholar