[1]
Choi, J. Y., & Oh, T. S. CO sensitivity of La2O3-doped SnO2 thick film gas sensor. Thin Solid Films, 547, 230-234(2013).
DOI: 10.1016/j.tsf.2013.02.039
Google Scholar
[2]
Choudhury, C. A. B. S., & Girija, K. G. Reliability studies of highly sensitive and specific multi-gas sensor based on nanocrystalline SnO2 film. Sensors and Actuators (2014).
DOI: 10.1016/j.snb.2013.11.118
Google Scholar
[3]
Lee, Y. -I., Lee, K. -J., Lee, D. -H., Jeong, Y. -K., Lee, H. S., & Choa, Y. -H. Preparation and gas sensitivity of SnO2 nanopowder homogenously doped with Pt nanoparticles. Current Applied Physics, 9, S79-S81. Chemical, 193, 484-491. (2009).
DOI: 10.1016/j.cap.2008.08.024
Google Scholar
[4]
Parthibavarman, M., Renganathan, B., & Sastikumar, D. Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Current Appl Phys, 13(7), 1537-1544. (2013).
DOI: 10.1016/j.cap.2013.05.016
Google Scholar
[5]
Vilà, A., Gomez, A., Portilla, L., & Morante, J. R. Influence of In and Ga additives onto SnO2 inkjet-printed semiconductor. Thin Solid Films, 553, 118-122. (2014).
DOI: 10.1016/j.tsf.2013.12.044
Google Scholar
[6]
Zhuo, M., Chen, Y., Sun, J., Zhang, H., Guo, D., Zhang, H., et al. Humidity sensing properties of a single Sb doped SnO2 Nano wire field effect transistor. Sensors and Actuators B: Chemical, 186, 78-83. (2013).
DOI: 10.1016/j.snb.2013.05.043
Google Scholar
[7]
Duverneuil, P., Maury, F., Pebere, N., Senocq, F., & Vergnes, H. Chemical vapor deposition of SnO2 coatings on Ti plates for the preparation of electrocatalytic anodes. Surface and Coatings Tech, 151–152, 9-13. (2002).
DOI: 10.1016/s0257-8972(01)01618-8
Google Scholar
[8]
Zhu, Y., Wang, L., Huang, G., Chai, Y., Zhai, X., & Huang, W. Luminescent and photocatalytic properties of hollow SnO2 nanospheres. Mat. Sci and Eng: B, 178(10), 725-729. (2013).
DOI: 10.1016/j.mseb.2013.03.006
Google Scholar
[9]
Bastami, H., & Taheri-Nassaj, E. Synthesis of nanosized (Co, Nb, Sm)-doped SnO2 powders using co-precipitation method. J of Alloys and Comp, 495(1), 121-125. (2010).
DOI: 10.1016/j.jallcom.2010.01.099
Google Scholar
[10]
Fu, C., Wang, J., Yang, M., Su, X., Xu, J., & Jiang, B. Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method. J. of Non-Crystalline Solids, 357(3), 1172-1176 (2011).
DOI: 10.1016/j.jnoncrysol.2010.10.019
Google Scholar
[11]
Varshney, D., & Verma, K. Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. of Mol Structure, 1034, 216-222. (2013).
DOI: 10.1016/j.molstruc.2012.10.049
Google Scholar
[12]
Bajpai, N., Khan, S. A., Kher, R. S., Bramhe, N., Dhoble, S. J., & Tiwari, A. Thermoluminescence investigation of sol–gel derived and γ-irradiated SnO2: Eu3+ nanoparticles. J. Luminescence, 145, 940-943. (2014).
DOI: 10.1016/j.jlumin.2013.09.020
Google Scholar
[13]
Liu, X. M., Wu, S. L., Chu, P. K., Zheng, J., & Li, S. L. Characteristics of nano Ti-doped SnO2 powders prepared by sol–gel method. Mat Sci and Eng A, 426(1-2), 274-277. (2006).
DOI: 10.1016/j.msea.2006.04.032
Google Scholar
[14]
Zhong, X., Yang, B., Zhang, X., Jia, J., & Yi, G. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology, 10(3), 365-370. (2012).
DOI: 10.1016/j.partic.2011.09.005
Google Scholar
[15]
Firooz, A. A., Hyodo, T., Mahjoub, A. R., Khodadadi, A. A., & Shimizu, Y. Synthesis and gas-sensing properties of nano- and meso-porous MoO3-doped SnO2. Sensors and Actuators B: Chemical, 147(2), 554-560. (2010).
DOI: 10.1016/j.snb.2010.03.021
Google Scholar
[16]
Yuan, L., Guo, Z. P., Konstantinov, K., Liu, H. K., & Dou, S. X. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. J. of Power Sources, 159(1), 345-348. (2006).
DOI: 10.1016/j.jpowsour.2006.04.048
Google Scholar
[17]
Yuan, L., Konstantinov, K., Wang, G. X., Liu, H. K., & Dou, S. XNano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries. J. Power Sources, 146(1-2), 180-184. (2005).
DOI: 10.1016/j.jpowsour.2005.03.008
Google Scholar
[18]
Cao, X., Shu, Y. -c., Hu, Y. N, Li, G. -p, & Liu, C. Integrated process of large-scale and size-controlled SnO2 nanoparticles by hydrothermal method. Transactions of Nonferrous Metals Society of China, 23(3), 725-730. (2013).
DOI: 10.1016/s1003-6326(13)62521-2
Google Scholar
[19]
Talebian, N., & Jafarinezhad, F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceramics International, 39(7), 8311-8317. (2013).
DOI: 10.1016/j.ceramint.2013.03.101
Google Scholar
[20]
Asama. N. Naje , Azhar S. Norry, Abdulla. M. Suhail, Preparation and Characterization of SnO2 Nanoparticles , Journal of IJIRSET, Vol. 2, Issue 12, (2013).
Google Scholar
[21]
Aziz . Madzlan, Abbas Saad Sabe , Wan Rosemaria, Wan Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method, Materials Let. 91 . 31–34. (2013).
DOI: 10.1016/j.matlet.2012.09.079
Google Scholar
[22]
Rammamorthy R, M. K Kennedy, H. Nienhaus, Sensors Actuators B 88, 281-285. (2002).
Google Scholar
[23]
Nehru L. C, Swaminathan. V, Sanjeeviraja. C, Photoluminescence Studies on Nanocrystalline Tin Oxide Powder for Optoelectronic Devices, American J. Mat Sci, , 2(2): 6-10, ( 2012).
DOI: 10.5923/j.materials.20120202.02
Google Scholar