[1]
FUJISHIMA A. and HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 283(5358): 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
ZHANG Z H, XU Y, MA X P, LI FY, CHEN Z L, ZHANG F Q AND DIONYSIOU D D. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials, 2012, 209: 271-277.
DOI: 10.1016/j.jhazmat.2012.01.021
Google Scholar
[3]
ZHANG X W and LEI L C. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition. Applied Surface Science, 2008, 254(8): 2406-2412.
DOI: 10.1016/j.apsusc.2007.09.067
Google Scholar
[4]
YE SY, TIAN Q M, SONG X L and LUO S C. Photoelectrocatalytic degradation of ethylene by a combination of TiO2 and activated carbon felts. Journal of Photochemistry and Photobiology a-Chemistry, 2009, 208(1): 27-35.
DOI: 10.1016/j.jphotochem.2009.08.001
Google Scholar
[5]
YAP P S, LIM T T AND SRINIVASAN M. Nitrogen-doped TiO2/AC bi-functional composite prepared by two-stage calcination for enhanced synergistic removal of hydrophobic pollutant using solar irradiation. Catalysis Today, 2011, 161(1): 46-52.
DOI: 10.1016/j.cattod.2010.09.024
Google Scholar
[6]
SUBRAMANI A K, BYRAPPA K, ANANDA S, RAI K M L, RANGANATHAIAH C and YOSHIMURA M. Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bulletin of Materials Science, 2007, 30(1): 37-41.
DOI: 10.1007/s12034-007-0007-8
Google Scholar
[7]
CHEN X and MAO S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemistry Review, 2007, 107(7): 2891-2959.
DOI: 10.1021/cr0500535
Google Scholar
[8]
MICHAEL R H, SCOT T M, WONYONG C and DETLEF W B. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96.
Google Scholar
[9]
LI Y J, CHEN J, LIU J B, MA M Y, CHEN W and LI L Y. Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor. Journal of Environmental Sciences, 2010, 22(8): 1290-1296.
DOI: 10.1016/s1001-0742(09)60252-7
Google Scholar
[10]
CHOY K L. Chemical vapour deposition of coatings. Progress in Materials Science, 2003, 48(2): 57-170.
DOI: 10.1016/s0079-6425(01)00009-3
Google Scholar
[11]
MINERO C, CATOZZO F and PELIZZETTI E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir, 1992, 8(2): 481-486.
DOI: 10.1021/la00038a029
Google Scholar
[12]
BANSAL R C and GOYAL M. Activated carbon adsorption. CRC Press, (2005).
Google Scholar
[13]
VELASCO L F, FONSECA I M, PARRA J B, LIMA J C and ANIA C O. Photochemical behaviour of activated carbons under UV irradiation. Carbon, 2012, 50(1): 249-258.
DOI: 10.1016/j.carbon.2011.08.042
Google Scholar
[14]
MIYAWAKI J, LEE G H, YEH J, SHIRATORI N, SHIMOHARA T, MOCHIDA I and YOON S H. Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catalysis Today, 2012, 185(1): 278-283.
DOI: 10.1016/j.cattod.2011.09.036
Google Scholar
[15]
LIU G L, HAN C, PELAEZ M, ZHU D W, LIAO S J, LIKADIMOS V, LOANNIDIS N, KONTOS A G, FALARAS P, DUNLOP P S M, BYRNE J A and DIONYSIOU D D. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology, 2012, 23(29): 294003.
DOI: 10.1088/0957-4484/23/29/294003
Google Scholar
[16]
HABIBI M H and ZENDEHDEL M. Synthesis and characterization of titania nanoparticles on the surface of microporous perlite using sol-gel method: Influence of titania precursor on characteristics. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(3): 634-639.
DOI: 10.1007/s10904-011-9500-z
Google Scholar
[17]
VELASCO L F, PARRA J B and ANIA C O. Role of activated carbon features on the photocatalytic degradation of phenol. Applied Surface Science, 2010, 256(17): 5254-5258.
DOI: 10.1016/j.apsusc.2009.12.113
Google Scholar
[18]
ORLANDUCCI S, SESSA V, TERRANOVA M L, BATTISTON G A, BATTISTON S and GERBASI R. Nanocrystalline TiO2 on single walled carbon nanotube arrays: Towards the assembly of organized C/TiO2 nanosystems. Carbon, 2006, 44(13): 2839-2843.
DOI: 10.1016/j.carbon.2006.03.018
Google Scholar
[19]
LIU S X, CHE X Y and CHEN X. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 2007, 143(1-2): 257-263.
DOI: 10.1016/j.jhazmat.2006.09.026
Google Scholar
[20]
ZHANG X W, ZHOU M H and LEI L C. TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44(2): 325-333.
DOI: 10.1016/j.carbon.2005.07.033
Google Scholar
[21]
LIU Y Z, YANG S G, HONG J and SUN C. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. Journal of Hazardous Materials, 2007, 142(1-2): 208-215.
DOI: 10.1016/j.jhazmat.2006.08.020
Google Scholar
[22]
TAO Y, SCHWARTZ S, WU C Y and MAZYCK D W. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams. Industrial & Engineering Chemistry Research, 2005, 44(19): 7366-7372.
DOI: 10.1021/ie048749w
Google Scholar
[23]
LU M C, CHEN J N AND CHANG K T. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur. Chemosphere, 1999, 38(3): 617-627.
DOI: 10.1016/s0045-6535(98)00204-5
Google Scholar
[24]
MATOS J, LAINE J and HERRMANN J M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B-Environmental, 1998, 18(3-4): 281-291.
DOI: 10.1016/s0926-3373(98)00051-4
Google Scholar
[25]
MILTENYI S, MULLER W, WEICHEL W and RADBRUCH A. High-gradient magnetic cell-separation with MACS. Cytometry, 1990, 11(2): 231-238.
DOI: 10.1002/cyto.990110203
Google Scholar
[26]
YAVUZ C T, MAYO J T, YU W W, PRAKASH A, FALKNER J C, YEAN S, CONG L L, SHIPLEY H J, KAN A, TOMSON M, NATELSON D and COLVIN V L. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 2006, 314(5801): 964-967.
DOI: 10.1126/science.1131475
Google Scholar
[27]
TRYBA B, PISZCZ M, GRZMIL B, PATTEK J A and MORAWSKI A W. Photodecomposition of dyes on Fe-C-TiO2 photocatalysts under UV radiation supported by photo-Fenton process. Journal of Hazardous Materials, 2009, 162(1): 111-119.
DOI: 10.1016/j.jhazmat.2008.05.057
Google Scholar
[28]
OH W C, ZHANG F J, CHEN M L, LEE Y M and KO W B. Characterization and relative photonic efficiencies of a new Fe-ACF/TiO2 composite photocatalysts designed for organic dye decomposition. Journal of Industrial and Engineering Chemistry, 2009, 15(2): 190-195.
DOI: 10.1016/j.jiec.2008.09.019
Google Scholar
[29]
AO Y H, XU J J, FU D G and YUAN C W. A simple route for the preparation of anatase titania-coated magnetic porous carbons with enhanced photocatalytic activity. Carbon, 2008, 46(4): 596-603.
DOI: 10.1016/j.carbon.2008.01.009
Google Scholar
[30]
YANG N, ZHU S M, ZHANG D and XU S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, 2008, 62(4-5): 645-647.
DOI: 10.1016/j.matlet.2007.06.049
Google Scholar
[31]
RUDGE S R, KURTZ T L, VESSELY C R, CATTERALL L G and WILLIAMSON D L. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials, 2000, 21(14): 1411-1420.
DOI: 10.1016/s0142-9612(00)00006-5
Google Scholar
[32]
LI Y J, CHEN J, LIU J B, MA M Y, CHEN W and LI L Y. Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor. Journal of Environmental Sciences-China, 2010, 22(8): 1290-1296.
DOI: 10.1016/s1001-0742(09)60252-7
Google Scholar
[33]
YANG M S, XIE Q, ZHANG J, LIU J, WANG Y, ZHANG X L and ZHANG Q W. Effects of coal rank, Fe3O4 amounts and activation temperature on the preparation and characteristics of magnetic activated carbon. Mining Science and Technology (China), 2010, 20(6): 872-876.
DOI: 10.1016/s1674-5264(09)60298-2
Google Scholar
[34]
ZHANG J, XIE Q, LIU J, YANG M S and YAO X. Role of Ni(NO3)2 in the preparation of a magnetic coal-based activated carbon. Mining Science and Technology (China), 2011, 21(4): 599-603.
DOI: 10.1016/j.mstc.2011.01.003
Google Scholar
[35]
SNELL F R D and ETTRE L S. Encyclopedia of industrial chemical analysis. Interscience Publisher, 1974, (19): 107-109.
Google Scholar
[36]
NI Y N, XIA Z Z and KOKOT S. A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network. Journal of Hazardous Materials, 2011, 192(2): 722-729.
DOI: 10.1016/j.jhazmat.2011.05.081
Google Scholar
[37]
HJ/T 399-2007, Water quality-determination of the chemical oxygen demand - fast digestion-spectrophotometric method. Ministry of Environmental Protection of the People's Republic of China, 2007. (In Chinese).
Google Scholar
[38]
ASILTURK M and SENER S. TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities. Chemical Engineering Journal, 2012, 180: 354-363.
DOI: 10.1016/j.cej.2011.11.045
Google Scholar
[39]
SUHAS, CARROTT P J M and CARROTT M. Lignin - from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98(12): 2301-2312.
DOI: 10.1016/j.biortech.2006.08.008
Google Scholar
[40]
DIAS J M, ALVIM F M C M, ALMEIDA M F. RIVERA U J and SAN CHEZ P M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 2007, 85(4): 833-846.
DOI: 10.1016/j.jenvman.2007.07.031
Google Scholar
[41]
RANDENIYA L K, BENDAVID A, MARTIN P J and PRESTON E W. Photoelectrochemical and structural properties of TiO2 and N-doped TiO2 thin films synthesized using pulsed direct current plasma-activated chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(49): 18334-18340.
DOI: 10.1021/jp075938u
Google Scholar
[42]
LIU Z G, ZHANG F S and SASAI R. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chemical Engineering Journal, 2010, 160(1): 57-62.
DOI: 10.1016/j.cej.2010.03.003
Google Scholar