Mechanical Properties and Surface Morphology of Diamond-Like Carbon Films with SiNx Interlayer

Article Preview

Abstract:

Diamond-like carbon (DLC) film has remarkable physical, mechanical, biomedical and tribological properties that make it attractive material for numerous industrial applications needs of advanced mechanical systems. In this study, deposition process of DLC films on Si (100) are performed by direct-current (DC) magnetron sputtering method. The effects of interlayer on the compositions, structures and mechanical properties of DLC films are studied. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal the creation of high uniform surface morphology and low roughness DLC films with SiNx interlayer. For comparison, DLC films with different interlayers are also grown. The Raman spectra are analyzed in order to characterize the film compositions. Indentation test was performed to value the mechanical properties of DLC films. Raman, SEM, and AFM analyses are correlated with the mechanical properties of the DLC films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

515-519

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Casiraghi, J. Robertson and A.C. Ferrari: Mater. Today Vol. 10 (2007), p.44.

Google Scholar

[2] Y. Gogotsi, S. Welz, D.A. Ersoy and M.J. McNallan: Nature Vol. 411 (2001), p.283.

Google Scholar

[3] K. Bewilogua and D. Hofmann: Surf. Coat. Techn. Vol. 242 (2014), p.214.

Google Scholar

[4] D.R. Paul: Science Vol. 335 (2012), p.413.

Google Scholar

[5] S. Karan, S. Samitsu, X. Peng, K. Kurashima and I. Ichinose: Science Vol. 335 (2012) p.444.

Google Scholar

[6] J. Robertson: J. Mater. Sci. Eng. R Vol. 37 (2002), p.129.

Google Scholar

[7] P.W. May: Science Vol. 319 (2008) p.1490.

Google Scholar

[8] J. Pu, S. Wang, C. Lin and J.C. Sung: Thin Solid Films Vol. 519 (2010) p.521.

Google Scholar

[9] K. Vercammen, J. Meneve, E. Dekempeneer, J. Smeets, E.W. Roberts and M.J. Eiden: Surf. Coat. Technol. Vol. 120-121 (1999), p.612.

DOI: 10.1016/s0257-8972(99)00428-4

Google Scholar

[10] C. Donnet, J. Fontaine, T. Le. Mogne, M. Belin, C. He´au, J. P. Terrat, F. Vaux and G. Pont: Surf. Coat. Technol. Vol. 120-121 (1999), p.548.

DOI: 10.1016/s0257-8972(99)00432-6

Google Scholar

[11] C. Casiraghi, J. Robertson and A.C. Ferrari: Mater. Today Vol. 10 (2007), p.44.

Google Scholar

[12] F.L. Freire Jr.: J. Non-Cryst. Solids Vol. 304 (2002), p.251.

Google Scholar

[13] M. Koike, N. Shibata, H. Kato and Y. Takahashi: IEEE J. Sel. Top. Quant. Vol. 8 (2002), p.271.

Google Scholar

[14] A.A. Voevodin, J.P.O. Neill and J.S. Zabinski: Surf. Coat. Technol. Vol. 116-119 (1999), p.36.

Google Scholar

[15] S. Yang, X. Li, N.M. Renevier and D.G. Teer: Surf. Coat. Technol. Vol. 142-144 (2001), p.85.

Google Scholar

[16] R. Cristescu, T. Patz, R. J. Narayan, N. Menegazzo, B. Mizaikoff, D. E. Mihaiescu, P. B. Messersmith, I. Stamatin, I. N. Mihailescu and D. B. Chrisey: Appl. Surf. Sci. Vol. 247 (2005) p.217.

DOI: 10.1016/j.apsusc.2005.01.066

Google Scholar

[17] N. Dwivedi, S. kumar and H.K. Malik: J. Appl. Phys. Vol. 112 (2012), p.023518.

Google Scholar

[18] J. Chen, C. Wang, J. Wang, Y. Li, R. Guo, B. Ma, F. Zhou and W. Liu: Appl. Surf. Sci. Vol. 256 (2009), p.39.

Google Scholar

[19] J. Robertson: Surf. Coat. Technol. Vol. 50 (1992), p.185.

Google Scholar

[20] A.C. Ferrari and J. Robertson: Phys. Rev. B Vol. 61 (2000), p.14095.

Google Scholar