[1]
Vatin, N., Chechevichkin, V., Chechevichkin, A., Shilova, Y., Yakunin, L. Application of natural zeolites for aquatic and air medium purification (2014) Applied Mechanics and Materials, 587-589, pp.565-572.
DOI: 10.4028/www.scientific.net/amm.587-589.565
Google Scholar
[2]
Strelets, K., Kitain, M., Petrochenko, M. Welding spark parameters determination for cyclone removal calculation (2014) Advanced Materials Research, 941-944 pp.2098-2103.
DOI: 10.4028/www.scientific.net/amr.941-944.2098
Google Scholar
[3]
Girgidov, A. Deposition of solid particles from a concentrated suspension (2014) Power Technology and Engineering, 48(1), pp.29-33.
DOI: 10.1007/s10749-014-0478-x
Google Scholar
[4]
Kharkov, N., Ermak, O., Aver'yanova, O. Numerical simulation of the centrifugal separator for oil-water emulsion (2014) Advanced Materials Research, 945-949 pp.944-950.
DOI: 10.4028/www.scientific.net/amr.945-949.944
Google Scholar
[5]
Szkarowski, A., Janta-Lipińska S. Fuel combustion optimizing by regulated level of chemical underburn (2013) Annual Set The Environment Protection, 15(tom 15, Part 1), pp.981-995.
Google Scholar
[6]
Petrichenko, M., Petrochenko, M. Gidravlika svobodnokonvektivnykh techeniy v ograzhdayushchikh konstruktsiyakh s vozdushnym zazorom [Hydraulics free convection flows in walling air gap] (2011) Magazine of Civil Engineering, 8(26), pp.51-56. (rus).
DOI: 10.5862/mce.26.8
Google Scholar
[7]
Dąbrowski, J., Piecuch, T. Mathematical Description of Combustion Process of Selected Groups of Waste (2011) Annual Set The Environment Protection, 13 (tom 13), pp.253-268.
Google Scholar
[8]
Girgidov, A., Vatin, N., Strelets, K., Chislennoye modelirovaniye trekhmernogo polya skorosti v tsiklone [Numerical modelling the three-dimensional velocity field in the cyclone] (2011) Magazine of Civil Engineering. 5(23), pp.5-9. (rus).
DOI: 10.5862/mce.23.5
Google Scholar
[9]
Girgidov, A. Mekhanika zhidkosti i gaza (gidravlika) [Fluid Mechanics: Third edition] (2002) Fluid Mechanics: Third edition, 703 p. (rus).
Google Scholar
[10]
Vatin, N., Strelets, K., Air purification with the help of cyclone equipment (2003) SPbSTU (rus).
Google Scholar
[11]
Liu, F., Chen, J., Zhang, A., Wang, X., Dong, T. Performance and flow behavior of four identical parallel cyclones (2014) Separation and Purification Technology, 134, pp.147-157.
DOI: 10.1016/j.seppur.2014.07.030
Google Scholar
[12]
Oh, J., Choi, S., Kim, J., Lee, S., Jin, G. Particle separation with the concept of uniflow cyclone(2014) Powder Technology, 254, pp.500-507.
DOI: 10.1016/j.powtec.2014.01.057
Google Scholar
[13]
Haig, C.W., Hursthouse, A., McIlwain, S., Sykes, D. The effect of particle agglomeration and attrition on the separation efficiency of a Stairmand cyclone (2014) Powder Technology, 258, pp.110-124.
DOI: 10.1016/j.powtec.2014.03.008
Google Scholar
[14]
Hao, Z.R., Xu, J., Bie, H.Y., Zhou, Z.H. Numerical simulation of three-dimensional unsteady flow field in the cyclone(2013) Advanced Materials Research, 774-776, pp.
DOI: 10.4028/www.scientific.net/amr.774-776.258
Google Scholar
[15]
Zhang, Z.W., Ji, X.L., Kang, C.M., Zhou, Y.S. Simulation research of the particles' track in cyclone separator (2013) Advanced Materials Research, 740, pp.382-386.
DOI: 10.4028/www.scientific.net/amr.740.382
Google Scholar
[16]
Winfield, D., Paddison, D., Cross, M., Croft, N., Craig, I. Performance comparison of a blast furnace gravity dust-catcher vs. tangential triple inlet gas separation cyclone using computational fluid dynamics(2013).
DOI: 10.1016/j.seppur.2013.04.035
Google Scholar
[17]
Huang, C. -H., Lee, J. -T. Pressure characteristics of the air flow field of cyclone(2013) Advanced Materials Research, 663, pp.532-536.
DOI: 10.4028/www.scientific.net/amr.663.532
Google Scholar
[18]
Winfield, D., Cross, M., Croft, N., Paddison, D., Craig, I. Performance comparison of a single and triple tangential inlet gas separation cyclone: ACFD Study (2013) Powder Technology, 235, pp.520-531.
DOI: 10.1016/j.powtec.2012.10.026
Google Scholar
[19]
Shi, B., Wei, J., Chen, P. 3D turbulent flow modeling in the separation column of a circumfluent cyclone(2013) Powder Technology, 235, pp.82-90.
DOI: 10.1016/j.powtec.2012.10.009
Google Scholar
[20]
Qiu, Y., Deng, B., Kim, C.N. Numerical study of the flow field and separation efficiency of a divergent cyclone(2012) Powder Technology, 217, pp.231-237.
DOI: 10.1016/j.powtec.2011.10.031
Google Scholar
[21]
Kçpa, A. Division of outlet flow in a cyclone vortex finder - The CFD calculations (2010) Separation and Purification Technology, 75 (2), pp.127-131.
DOI: 10.1016/j.seppur.2010.08.009
Google Scholar
[22]
Wang, W., Zhang, P., Wang, L., Chen, G., Li, J., Li, X. Structure and performance of the circumfluent cyclone(2010) Powder Technology, 200 (3), pp.158-163.
DOI: 10.1016/j.powtec.2010.02.020
Google Scholar
[23]
Wan, G., Sun, G., Xue, X., Shi, M. Solids concentration simulation of different size particles in a cyclone separator(2008) Powder Technology, 183 (1), pp.94-104.
DOI: 10.1016/j.powtec.2007.11.019
Google Scholar
[24]
Chen, J., Shi, M. A universal model to calculate cyclone pressure drop (2007) Powder Technology, 171 (3), pp.184-191.
DOI: 10.1016/j.powtec.2006.09.014
Google Scholar