Energy Performance of Particle Settling in Cyclones

Article Preview

Abstract:

The most common way of how to purify gas from the solid and fluid air contaminant particles contained therein is the flow deformation and removal of particles under the action of inertial forces. This approach is realized in the cyclone system. To estimate the particles settling regularity and to optimize the construction of the cyclone device mathematic models of movement of particles in the rotational flow are used. Nowadays a number of mathematic models which describe this process are used. Normally the impact of the rotational flow turbulence is not taken into account in the existing models. Essentially new possibilities to estimate the particles settling regularity are provided by using the model of the turbulent diffusion with the finite velocity (DFV) which is demonstrated in the article.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1363-1371

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vatin, N., Chechevichkin, V., Chechevichkin, A., Shilova, Y., Yakunin, L. Application of natural zeolites for aquatic and air medium purification (2014) Applied Mechanics and Materials, 587-589, pp.565-572.

DOI: 10.4028/www.scientific.net/amm.587-589.565

Google Scholar

[2] Strelets, K., Kitain, M., Petrochenko, M. Welding spark parameters determination for cyclone removal calculation (2014) Advanced Materials Research, 941-944 pp.2098-2103.

DOI: 10.4028/www.scientific.net/amr.941-944.2098

Google Scholar

[3] Girgidov, A. Deposition of solid particles from a concentrated suspension (2014) Power Technology and Engineering, 48(1), pp.29-33.

DOI: 10.1007/s10749-014-0478-x

Google Scholar

[4] Kharkov, N., Ermak, O., Aver'yanova, O. Numerical simulation of the centrifugal separator for oil-water emulsion (2014) Advanced Materials Research, 945-949 pp.944-950.

DOI: 10.4028/www.scientific.net/amr.945-949.944

Google Scholar

[5] Szkarowski, A., Janta-Lipińska S. Fuel combustion optimizing by regulated level of chemical underburn (2013) Annual Set The Environment Protection, 15(tom 15, Part 1), pp.981-995.

Google Scholar

[6] Petrichenko, M., Petrochenko, M. Gidravlika svobodnokonvektivnykh techeniy v ograzhdayushchikh konstruktsiyakh s vozdushnym zazorom [Hydraulics free convection flows in walling air gap] (2011) Magazine of Civil Engineering, 8(26), pp.51-56. (rus).

DOI: 10.5862/mce.26.8

Google Scholar

[7] Dąbrowski, J., Piecuch, T. Mathematical Description of Combustion Process of Selected Groups of Waste (2011) Annual Set The Environment Protection, 13 (tom 13), pp.253-268.

Google Scholar

[8] Girgidov, A., Vatin, N., Strelets, K., Chislennoye modelirovaniye trekhmernogo polya skorosti v tsiklone [Numerical modelling the three-dimensional velocity field in the cyclone] (2011) Magazine of Civil Engineering. 5(23), pp.5-9. (rus).

DOI: 10.5862/mce.23.5

Google Scholar

[9] Girgidov, A. Mekhanika zhidkosti i gaza (gidravlika) [Fluid Mechanics: Third edition] (2002) Fluid Mechanics: Third edition, 703 p. (rus).

Google Scholar

[10] Vatin, N., Strelets, K., Air purification with the help of cyclone equipment (2003) SPbSTU (rus).

Google Scholar

[11] Liu, F., Chen, J., Zhang, A., Wang, X., Dong, T. Performance and flow behavior of four identical parallel cyclones (2014) Separation and Purification Technology, 134, pp.147-157.

DOI: 10.1016/j.seppur.2014.07.030

Google Scholar

[12] Oh, J., Choi, S., Kim, J., Lee, S., Jin, G. Particle separation with the concept of uniflow cyclone(2014) Powder Technology, 254, pp.500-507.

DOI: 10.1016/j.powtec.2014.01.057

Google Scholar

[13] Haig, C.W., Hursthouse, A., McIlwain, S., Sykes, D. The effect of particle agglomeration and attrition on the separation efficiency of a Stairmand cyclone (2014) Powder Technology, 258, pp.110-124.

DOI: 10.1016/j.powtec.2014.03.008

Google Scholar

[14] Hao, Z.R., Xu, J., Bie, H.Y., Zhou, Z.H. Numerical simulation of three-dimensional unsteady flow field in the cyclone(2013) Advanced Materials Research, 774-776, pp.

DOI: 10.4028/www.scientific.net/amr.774-776.258

Google Scholar

[15] Zhang, Z.W., Ji, X.L., Kang, C.M., Zhou, Y.S. Simulation research of the particles' track in cyclone separator (2013) Advanced Materials Research, 740, pp.382-386.

DOI: 10.4028/www.scientific.net/amr.740.382

Google Scholar

[16] Winfield, D., Paddison, D., Cross, M., Croft, N., Craig, I. Performance comparison of a blast furnace gravity dust-catcher vs. tangential triple inlet gas separation cyclone using computational fluid dynamics(2013).

DOI: 10.1016/j.seppur.2013.04.035

Google Scholar

[17] Huang, C. -H., Lee, J. -T. Pressure characteristics of the air flow field of cyclone(2013) Advanced Materials Research, 663, pp.532-536.

DOI: 10.4028/www.scientific.net/amr.663.532

Google Scholar

[18] Winfield, D., Cross, M., Croft, N., Paddison, D., Craig, I. Performance comparison of a single and triple tangential inlet gas separation cyclone: ACFD Study (2013) Powder Technology, 235, pp.520-531.

DOI: 10.1016/j.powtec.2012.10.026

Google Scholar

[19] Shi, B., Wei, J., Chen, P. 3D turbulent flow modeling in the separation column of a circumfluent cyclone(2013) Powder Technology, 235, pp.82-90.

DOI: 10.1016/j.powtec.2012.10.009

Google Scholar

[20] Qiu, Y., Deng, B., Kim, C.N. Numerical study of the flow field and separation efficiency of a divergent cyclone(2012) Powder Technology, 217, pp.231-237.

DOI: 10.1016/j.powtec.2011.10.031

Google Scholar

[21] Kçpa, A. Division of outlet flow in a cyclone vortex finder - The CFD calculations (2010) Separation and Purification Technology, 75 (2), pp.127-131.

DOI: 10.1016/j.seppur.2010.08.009

Google Scholar

[22] Wang, W., Zhang, P., Wang, L., Chen, G., Li, J., Li, X. Structure and performance of the circumfluent cyclone(2010) Powder Technology, 200 (3), pp.158-163.

DOI: 10.1016/j.powtec.2010.02.020

Google Scholar

[23] Wan, G., Sun, G., Xue, X., Shi, M. Solids concentration simulation of different size particles in a cyclone separator(2008) Powder Technology, 183 (1), pp.94-104.

DOI: 10.1016/j.powtec.2007.11.019

Google Scholar

[24] Chen, J., Shi, M. A universal model to calculate cyclone pressure drop (2007) Powder Technology, 171 (3), pp.184-191.

DOI: 10.1016/j.powtec.2006.09.014

Google Scholar