Designing Filtraring Equipment Forwater Wells of the Municipal Water Intakes in the City of Kursk

Article Preview

Abstract:

The issue of the development of filters for water wells, which work in hydrological conditions of Kursk water intakes,is discussed in the article. The article presents the main parameters forchoosing filtering equipment, its modern design and manufacturers.The basic problems arising whilewater well filtersoperation and the ways of solving these problems are presented. The paper givesa design of easily retrievable filter recommended for hydrogeological conditions of water intakes of Kursk.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1344-1349

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http: /byrim. com/filtr-dlya-skvazhiny/filtry-dlya-skvajiny. html.

Google Scholar

[2] stuewa. com.

Google Scholar

[3] http: /www. voda-v-dome. ru/styuwa.

Google Scholar

[4] A patent for an invention №2197315, Russian Federation, IPC B01D29 / 48; authors Petrychenko VP, Kichigin EV Trounov PV Zemenkov YV, patentees FSUE VIOGEM, NPF ECOTON - № 2002102305/12; appl. 30. 01. 2002; publ. 27. 01. (2003).

Google Scholar

[5] Hydrogeological studies on intakes of Kursk region in order to develop recommendations for their optimal operation: report on research. Belgorod: Ecotone, 2006. 135 p.

Google Scholar

[6] Classification of filters water wells / VP Petrechenko, A.A. Akulshin, IS Shalai / News Southwestern State University. 2012. № 2, Part 3 pp.207-210.

Google Scholar

[7] Filter borehole: utility model patent №90504, Russian Federation, IPC E21V43 / 08; authors Akulshin AA , Pozdnyakov AI, the patentee State Educational Institution of Higher Professional Education Kursk State Technical University, - № 2200513365/22; appl. 31. 10. (2005).

DOI: 10.22416/1382-4376-2018-28-1-20-25

Google Scholar

[8] Vatin, N.I., Chechevichkin, V.N., Chechevichkin, A.V., Shilova, Y., Yakunin, L.A. Application of natural zeolites for aquatic and air medium purification (2014) Applied Mechanics and Materials, 587-589, pp.565-572.

DOI: 10.4028/www.scientific.net/amm.587-589.565

Google Scholar

[9] Andrianova, M.J., Molodkina, L.M., Chusov, A.N. Changing of contaminants content and disperse state during treatment and transportation of drinking water (2014) Applied Mechanics and Materials, 587-589, pp.573-577.

DOI: 10.4028/www.scientific.net/amm.587-589.573

Google Scholar

[10] Andrianova, M.J., Vorobjev, K.V., Lednova, J.A., Chusov, A.N. A short-term model experiment of organic pollutants treatment with aquatic macrophytes in industrial and municipal waste waters (2014).

DOI: 10.4028/www.scientific.net/amm.587-589.653

Google Scholar

[11] Denafas, G., Ruzgas, T., Martuzevičius, D., Shmarin, S., Hoffmann, M., Mykhaylenko, V., Ogorodnik, S., Romanov, M., Neguliaeva, E., Chusov, A., Turkadze, T., Bochoidze, I., Ludwig, C. Seasonal variation of municipal solid waste generation and composition in four East European cities (2014).

DOI: 10.1016/j.resconrec.2014.06.001

Google Scholar

[12] Hoyland, V.W., Knocke, W.R., Falkinham, J.O., Pruden, A., Singh, G. Effect of drinking water treatment process parameters on biological removal of manganese from surface water. (2014) Water Research, 66, pp.31-39.

DOI: 10.1016/j.watres.2014.08.006

Google Scholar

[13] Dankovich, T.A., Smith, J.A. Incorporation of copper nanoparticles into paper for point-of-use water purification. (2014) Water Research, 63, pp.245-251.

DOI: 10.1016/j.watres.2014.06.022

Google Scholar

[14] Brame, J., Long, M., Li, Q., Alvarez, P. Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. (2014) Water Research, 60, pp.259-266.

DOI: 10.1016/j.watres.2014.05.005

Google Scholar

[15] Dereli, R.K., Grelot, A., Heffernan, B., van der Zee, F.P., van Lier, J.B. Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater (2014).

DOI: 10.1016/j.watres.2014.03.073

Google Scholar

[16] Kalmykova, Y., Moona, N., Strömvall, A. -M., Björklund, K. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters (2014).

DOI: 10.1016/j.watres.2014.03.011

Google Scholar

[17] He, J., Siah, T. -S., Paul Chen, J. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. (2014) Water Research, 56, pp.88-97.

DOI: 10.1016/j.watres.2014.02.030

Google Scholar

[18] Tsui, M.M.P., Leung, H.W., Lam, P.K.S., Murphy, M.B. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants. (2014) Water Research, 53, pp.58-67.

DOI: 10.1016/j.watres.2014.01.014

Google Scholar

[19] Molle, P. French vertical flow constructed wetlands: A need of a better understanding of the role of the deposit layer. (2014) Water Science and Technology, 69 (1), pp.106-112.

DOI: 10.2166/wst.2013.561

Google Scholar

[20] Davutluoglu, O.I., Seckin, G. Kinetic evaluation and process performance of an upflow anaerobic filter reactor degrading terephthalic acid. (2014) Water Science and Technology, 69 (12), pp.2562-2569.

DOI: 10.2166/wst.2014.188

Google Scholar

[21] Myat, D.T., Stewart, M.B., Mergen, M., Zhao, O., Orbell, J.D., Gray, S. Experimental and computational investigations of the interactions between model organic compounds and subsequent membrane fouling. (2014) Water Research, 48 (1), pp.108-118.

DOI: 10.1016/j.watres.2013.09.020

Google Scholar

[22] Virahsawmy, H.K., Stewardson, M.J., Vietz, G., Fletcher, T.D. Factors that affect the hydraulic performance of raingardens: Implications for design and maintenance. (2014) Water Science and Technology, 69 (5), pp.982-988.

DOI: 10.2166/wst.2013.809

Google Scholar

[23] Yoochatchaval, W., Onodera, T., Sumino, H., Yamaguchi, T., Mizuochi, M., Okadera, T., Syutsubo, K. Development of a down-flow hanging sponge reactor for the treatment of low strength sewage. (2014).

DOI: 10.2166/wst.2014.270

Google Scholar

[24] Chen, X., Fukushi, K. Development of a natural treatment system consisting of red ball earth and alfalfa for the post-treatment of anaerobically digested livestock wastewater. (2014) Water Science and Technology, 70 (5), pp.795-802.

DOI: 10.2166/wst.2014.297

Google Scholar

[25] Mannapperuma, W.M.G.C.K., Abayasekara, C.L., Herath, G.B.B., Werellagama, D.R.I.B. Potentially pathogenic bacteria isolated from different tropical waters in Sri Lanka. (2013) Water Science and Technology: Water Supply, 13 (6), pp.1463-1469.

DOI: 10.2166/ws.2013.143

Google Scholar

[26] Kim, B., Gautier, M., Michel, P., Gourdon, R. Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment. (2013).

DOI: 10.2166/wst.2013.485

Google Scholar

[27] Raith, M.R., Kelty, C.A., Griffith, J.F., Schriewer, A., Wuertz, S., Mieszkin, S., Gourmelon, M., Reischer, G.H., Farnleitner, A.H., Ervin, J.S., Holden, P.A., Ebentier, D.L., Jay, J.A., Wang, D., Boehm, A.B., Aw, T.G., Rose, J.B., Balleste, E., Meijer, W.G., Sivaganesan, M., Shanks, O.C. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources (2013).

DOI: 10.1016/j.watres.2013.03.061

Google Scholar

[28] Ervin, J.S., Russell, T.L., Layton, B.A., Yamahara, K.M., Wang, D., Sassoubre, L.M., Cao, Y., Kelty, C.A., Sivaganesan, M., Boehm, A.B., Holden, P.A., Weisberg, S.B., Shanks, O.C. Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR method. (2013).

DOI: 10.1016/j.watres.2013.02.060

Google Scholar

[29] Tondera, K., Koenen, S., Pinnekamp, J. Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters. (2013) Water Science and Technology, 68 (5), pp.1004-1012.

DOI: 10.2166/wst.2013.340

Google Scholar