[1]
Reconstruction of Administrative Buildings of the 70's: The Possibility of Energy Modernization (2014).
Google Scholar
[2]
Increase of Energy Efficiency for Educational Institution Building (2014) Vatin, N.I., Nemova, D.V., Tarasova, D.S., Staritcyna, A.A. Advanced Material Research, 953–954, p.854–870.
DOI: 10.4028/www.scientific.net/amr.953-954.854
Google Scholar
[3]
Increase of Energy Efficiency of the Building of Kindergarten (2014) Vatin, N.I., Nemova, D.V., Kazimirova, A.S., Gureev, K.N. Advanced Material Research, 953–954, p.1537–1544.
DOI: 10.4028/www.scientific.net/amr.953-954.1537
Google Scholar
[4]
The Energy-Efficient Heat Insulation Thickness for Systems of Hinged Ventilated Facades (2014) Vatin, N.I., Gorshkov, A.S., Nemova, D.V., Staritcyna, A.A., Tarasova, D.S. Advanced Material Research, 941–944, p.905–920.
DOI: 10.4028/www.scientific.net/amr.941-944.905
Google Scholar
[5]
Renewable Energy Sources Used to Supply Pre-School Facilities with Energy in Different Weather Conditions (2014).
Google Scholar
[6]
Korniyenko, S.V. The Experimental Analysis and Calculative Assessment of Building Energy Efficiency (2014) Applied Mechanics and Materials, 618, p.509–513.
DOI: 10.4028/www.scientific.net/amm.618.509
Google Scholar
[7]
Korniyenko, S.V. Raschetno-eksperimentalnyi kontrol energosberezheniia zdanii [Settlement and experimental control of energy saving for buildings] (2013) Magazine of Civil Engineering, 8 (43), p.24–30.
DOI: 10.5862/mce.43.4
Google Scholar
[8]
Field study of human thermal comfort and thermal adaptability during the summer and winter in Beijing (2011) Cao, B., Zhu, Y., Ouyang, Q., Zhou, X., Huang, Li. Energy and Buildings, 43, p.1051–1056.
DOI: 10.1016/j.enbuild.2010.09.025
Google Scholar
[9]
Korniyenko, S.V. Uchet formy pri otcenke teplozashchity obolochki zdaniia [The accounting of the form at the assessment of the thermal performance of the envelopes] (2013) Construction of Unique Buildings and Structures, 5 (10), p.20–27.
Google Scholar
[10]
On the relation between architectural considerations and heating energy performance of Turkish residential buildings in Izmir (2014) Kazanasmaz, T., Uygun, İ.E., Akkurt, G.G., Turhan, C., Ekmen, K.E. Energy and Buildings, 72, p.38–50.
DOI: 10.1016/j.enbuild.2013.12.036
Google Scholar
[11]
Qi, F., Wang, Y. A new calculation method for shape coefficient of residential building using Google Earth (2014) Energy and Buildings, 76, p.72–80.
DOI: 10.1016/j.enbuild.2014.02.058
Google Scholar
[12]
Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages (2013) Granadeiro, V., Correia, J.R., Leal, V.M.S., Duarte, J.P. Energy and Buildings, 61, p.215–223.
DOI: 10.1016/j.enbuild.2013.02.018
Google Scholar
[13]
Influence of the compactness index to increase the internal temperature of a building in Saharan climate (2013) Bekkouche, S.M.A., Benouaz, T., Cherier, M.K., Hamdani, M., Yaiche, M.R., Benamrane, N. Energy and Buildings, 66, p.678–687.
DOI: 10.1016/j.enbuild.2013.07.077
Google Scholar
[14]
Korniyenko, S.V. Kompleksnaia otcenka teplozashchity ograzhdaiushchikh konstruktcii obolochki zdaniia [The complex assessment of a thermal performance of the building envelope] (2012) Magazine of Civil Engineering, 7 (33), p.43–49.
Google Scholar
[15]
Żelazna, A. Ocena efektów środowiskowych termomodernizacji na przykładzie budynku jednorodzinnego (2012) Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 14, p.729–740.
Google Scholar
[16]
Dylewski, R., Adamczyk, J. Economic and environmental benefits of thermal insulation of building external walls (2011) Building and Environment, 46, p.2615–2623.
DOI: 10.1016/j.buildenv.2011.06.023
Google Scholar