Finite Element Modeling of Porous Material Structure Represented by a Uniform Cubic Mesh

Article Preview

Abstract:

The work explores feasibility of 3D finite element modeling (FEM) to study the effective linear properties of porous brittle material microstructures represented by a uniform cubic mesh. Both artificial virtually generated and real 3D tomography specimens are considered in this work. A method for assessment of the critical value of tomography resolution is proposed. A method to build approximations of the linear effective structure properties of interest at virtually zero FE size is developed. The methods do not have to be associated with mechanical modeling only but can be applied in some other cases, e.g. effective thermal conductivity or effective permeability calculations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

928-936

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Krivoshapkina, E.F., Krivoshapkin, P.V., Dudkin, B.N. Microporous ceramic substrates of сordierite structure with use of various natural raw materials (2011).

Google Scholar

[2] Solovev, S.A. Oxidative conversion of methane on structured catalytic converters Ni–Al2O3/Cordierite (2011) Catalysis in industry, 4, pp.31-42.

Google Scholar

[3] Gassmann, F. Über Die Elastizität poröser Medien (1951) Vier, der Natur Gesellschaft, 96, pp.1-23.

Google Scholar

[4] Kachanov, M., Tsukrov, I., Shafiro, B. Effective Moduli of Solids With Cavities of Various Shapes (1994) Applied Mechanics Reviews, 47(1S), p.151–174.

DOI: 10.1115/1.3122810

Google Scholar

[5] Kachanov, M., Sevostianov, I., Shafiro, B. Explicit cross-property correlations for porous materials with anisotropic microstructures (2001) Journal of the Mechanics and Physics of Solids, 49(1), pp.1-25.

DOI: 10.1016/s0022-5096(00)00033-8

Google Scholar

[6] Knudsen, F.P. Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size (1959) Journal of the American Ceramic Society, 42(8), pp.376-387.

DOI: 10.1111/j.1151-2916.1959.tb13596.x

Google Scholar

[7] Bruno, G., Efremov, A.M., Levandovskyi, A.N., Clausen, B. Connecting the macro- and microstrain responses in technical porous ceramics: modeling and experimental validations (2011) Journal of Materials Science, 46(1), p.161–173.

DOI: 10.1007/s10853-010-4899-0

Google Scholar

[8] Roberts, A., Garboczi, E.J. Elastic properties of model porous ceramics (2000) Journal of the American Ceramic Society, 83(12), p.3041–3048.

DOI: 10.1111/j.1151-2916.2000.tb01680.x

Google Scholar

[9] Shmitko, E.I., Rezanov, A.A., Bedarev, A.A. Multiparameter structure optimization of the cellular silicate concrete (2013) Magazine of civil engineering, 3, pp.15-23.

DOI: 10.5862/mce.38.2

Google Scholar

[10] Roberts, A.P., Garboczi, E.J. Elastic properties of model random three-dimensional open-cell solids (2001) Journal of Mechanics and Physics of Solids, 50, pp.33-55.

DOI: 10.1016/s0022-5096(01)00056-4

Google Scholar

[11] Roberts, A., Garboczi, E.J. Computation of the linear elastic properties of random porous materials with a wide variety of microstructure (2002).

Google Scholar

[12] Charles, P. Ursenbach Simulation of elastic moduli for porous materials (2001) CREWES Research Report, 13, p.83–98.

Google Scholar

[13] Shtern, M.B., Kuzmov, A.V., Frolova, E.G., Vdovichenko, A.V. A study of the elastic behavior of powder materials with flat pores by computer modeling on an elementary cell (2005) Naukovі notatki Zbіrnik naukovix prac, 17, p.390–398.

Google Scholar

[14] Garboczi, E.J., Day, A.R. An algorithm for computing the effective linear elastic properties of heterogeneous materials: 3D results for composites with equal phase Poisson ratios (1995).

DOI: 10.1016/0022-5096(95)00050-s

Google Scholar

[15] Grishchenko, A.I., Semenov, A.S., Semenov, S.G., Melnikov, B.E. Influence of structural parameters of the masonry on effective elastic properties and strength (2014) Magazine of civil engineering, 5, pp, 95-106.

DOI: 10.5862/mce.49.10

Google Scholar

[16] Razina, I.S., Semenova, S. G., Sattarov, A. G., Musin, I. N. Microtomography application for development of new materials. Review (2005).

Google Scholar

[17] Garboczi, E.J. Bentz, D.P., Martys, N.S. Digital images and computer modeling (1999) Methods of the Physics of Porous Media, 35(1), p.1–41.

DOI: 10.1016/s0076-695x(08)60412-3

Google Scholar

[18] Garboczi, E.J. Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials (1998) NIST Int. Report 6269.

DOI: 10.6028/nist.ir.6269

Google Scholar

[19] Levandovskiy, A.N., Efremov, A.M., Bruno, G. Macro to micro stress and strain conversion in porous ceramics (2012) Materials Science Forum, 706-709, p.1667–672.

DOI: 10.4028/www.scientific.net/msf.706-709.1667

Google Scholar

[20] Emerson, J.E., Matt, J.C., Reilly, G.C., Amaka, C. Offiah Geometrically accurate 3D FE models from medical scans created to analyze the causes of sports injuries (2011) Procedia Engineering, (13), p.422–427.

DOI: 10.1016/j.proeng.2011.05.108

Google Scholar

[21] Roshhin, P.V., Rogachev, M.K., Vaskes Kardenas, L.K., Kuzmin, M.I., Litvin, V.T., Zinovev, A.M. Study of core material of Pechora natural bitumen deposit (2013) International research and development magazine, 8(15)-2, pp.45-48.

Google Scholar

[22] Yiotis, A.G., Kainourgiakis, M.E., Kikkinides, E. S, Stubos, A.K. Application of the Lattice-Boltzmann method to the modeling of population blob dynamics in 2 D porous domains (2010) Computers & Mathematics with Applications, 59(7), p.2315–2325.

DOI: 10.1016/j.camwa.2010.01.023

Google Scholar

[23] Mo, L.T., Huurman, M., Wu, S.P., Molenaar, A.A.A. 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete (2008) Finite Elements in Analysis and Design, 44(4), p.186–196.

DOI: 10.1016/j.finel.2007.11.012

Google Scholar

[24] Gorshkov, A.S., Vatin, N.I. Properties of the wall structures made of autoclaved cellular concrete products on the polyurethane foam adhesive (2013) Magazine of civil engineering, 5, pp.5-19.

DOI: 10.5862/mce.40.1

Google Scholar

[25] Gorshkov, A.S., Vatin, N.I. The innovative technology for erection of wall constructions of autoclaved aerated concrete blocks on polyurethane adhesive (2013) Construction of unique buildings and structures, 8, pp.20-28.

Google Scholar

[26] Nikitin, A.N., Ivankina, T.I., Sobolev, G.A., Sheffcyuk, K., Frishbutter, A., Valter, K. Neutron-graphics research of in-crystal deformations and stresses in a marble specimen at high temperatures and time loads (2004).

Google Scholar

[27] Frishbutter, A., Neov, D., Scheffzuk, C., Vrana, M., Walther, K. Lattice strain measurements on sandstones under load using neutron diffraction (2000) Journal of Structural Geology, 22(11-12), pp.1587-1600.

DOI: 10.1016/s0191-8141(00)00110-3

Google Scholar

[28] Darling, T. W, Tencate, J. A, Brown, D.W., Clausen, B., Vogel, S.C. Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior (2004) Geophysical Research Letters, 31(6), pp.1-4.

DOI: 10.1029/2004gl020463

Google Scholar

[29] Bruno, G., Efremov, A.M., Levandovskiy, A.N., Pozdnyakova, I., Hughes, D.J., Clausen, B. Thermal and Mechanical Response of Industrial Porous Ceramics (2010) Materials Science Forum, 652, pp.191-196.

DOI: 10.4028/www.scientific.net/msf.652.191

Google Scholar

[30] Kouznetsova, V.G. Computational homogenization for the multi-scale analysis of multi-phase materials (2002) Technische Universiteit Eindhoven.

Google Scholar

[31] Semenov, A.S., Avrunin, A.S., Grishchenko, A.I., Melnikov, B.E., Doktorov, A.A. Influence of nanoscale morphological characteristics on the mechanical properties of bone tissue (2013).

Google Scholar