[1]
Krivoshapkina, E.F., Krivoshapkin, P.V., Dudkin, B.N. Microporous ceramic substrates of сordierite structure with use of various natural raw materials (2011).
Google Scholar
[2]
Solovev, S.A. Oxidative conversion of methane on structured catalytic converters Ni–Al2O3/Cordierite (2011) Catalysis in industry, 4, pp.31-42.
Google Scholar
[3]
Gassmann, F. Über Die Elastizität poröser Medien (1951) Vier, der Natur Gesellschaft, 96, pp.1-23.
Google Scholar
[4]
Kachanov, M., Tsukrov, I., Shafiro, B. Effective Moduli of Solids With Cavities of Various Shapes (1994) Applied Mechanics Reviews, 47(1S), p.151–174.
DOI: 10.1115/1.3122810
Google Scholar
[5]
Kachanov, M., Sevostianov, I., Shafiro, B. Explicit cross-property correlations for porous materials with anisotropic microstructures (2001) Journal of the Mechanics and Physics of Solids, 49(1), pp.1-25.
DOI: 10.1016/s0022-5096(00)00033-8
Google Scholar
[6]
Knudsen, F.P. Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size (1959) Journal of the American Ceramic Society, 42(8), pp.376-387.
DOI: 10.1111/j.1151-2916.1959.tb13596.x
Google Scholar
[7]
Bruno, G., Efremov, A.M., Levandovskyi, A.N., Clausen, B. Connecting the macro- and microstrain responses in technical porous ceramics: modeling and experimental validations (2011) Journal of Materials Science, 46(1), p.161–173.
DOI: 10.1007/s10853-010-4899-0
Google Scholar
[8]
Roberts, A., Garboczi, E.J. Elastic properties of model porous ceramics (2000) Journal of the American Ceramic Society, 83(12), p.3041–3048.
DOI: 10.1111/j.1151-2916.2000.tb01680.x
Google Scholar
[9]
Shmitko, E.I., Rezanov, A.A., Bedarev, A.A. Multiparameter structure optimization of the cellular silicate concrete (2013) Magazine of civil engineering, 3, pp.15-23.
DOI: 10.5862/mce.38.2
Google Scholar
[10]
Roberts, A.P., Garboczi, E.J. Elastic properties of model random three-dimensional open-cell solids (2001) Journal of Mechanics and Physics of Solids, 50, pp.33-55.
DOI: 10.1016/s0022-5096(01)00056-4
Google Scholar
[11]
Roberts, A., Garboczi, E.J. Computation of the linear elastic properties of random porous materials with a wide variety of microstructure (2002).
Google Scholar
[12]
Charles, P. Ursenbach Simulation of elastic moduli for porous materials (2001) CREWES Research Report, 13, p.83–98.
Google Scholar
[13]
Shtern, M.B., Kuzmov, A.V., Frolova, E.G., Vdovichenko, A.V. A study of the elastic behavior of powder materials with flat pores by computer modeling on an elementary cell (2005) Naukovі notatki Zbіrnik naukovix prac, 17, p.390–398.
Google Scholar
[14]
Garboczi, E.J., Day, A.R. An algorithm for computing the effective linear elastic properties of heterogeneous materials: 3D results for composites with equal phase Poisson ratios (1995).
DOI: 10.1016/0022-5096(95)00050-s
Google Scholar
[15]
Grishchenko, A.I., Semenov, A.S., Semenov, S.G., Melnikov, B.E. Influence of structural parameters of the masonry on effective elastic properties and strength (2014) Magazine of civil engineering, 5, pp, 95-106.
DOI: 10.5862/mce.49.10
Google Scholar
[16]
Razina, I.S., Semenova, S. G., Sattarov, A. G., Musin, I. N. Microtomography application for development of new materials. Review (2005).
Google Scholar
[17]
Garboczi, E.J. Bentz, D.P., Martys, N.S. Digital images and computer modeling (1999) Methods of the Physics of Porous Media, 35(1), p.1–41.
DOI: 10.1016/s0076-695x(08)60412-3
Google Scholar
[18]
Garboczi, E.J. Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials (1998) NIST Int. Report 6269.
DOI: 10.6028/nist.ir.6269
Google Scholar
[19]
Levandovskiy, A.N., Efremov, A.M., Bruno, G. Macro to micro stress and strain conversion in porous ceramics (2012) Materials Science Forum, 706-709, p.1667–672.
DOI: 10.4028/www.scientific.net/msf.706-709.1667
Google Scholar
[20]
Emerson, J.E., Matt, J.C., Reilly, G.C., Amaka, C. Offiah Geometrically accurate 3D FE models from medical scans created to analyze the causes of sports injuries (2011) Procedia Engineering, (13), p.422–427.
DOI: 10.1016/j.proeng.2011.05.108
Google Scholar
[21]
Roshhin, P.V., Rogachev, M.K., Vaskes Kardenas, L.K., Kuzmin, M.I., Litvin, V.T., Zinovev, A.M. Study of core material of Pechora natural bitumen deposit (2013) International research and development magazine, 8(15)-2, pp.45-48.
Google Scholar
[22]
Yiotis, A.G., Kainourgiakis, M.E., Kikkinides, E. S, Stubos, A.K. Application of the Lattice-Boltzmann method to the modeling of population blob dynamics in 2 D porous domains (2010) Computers & Mathematics with Applications, 59(7), p.2315–2325.
DOI: 10.1016/j.camwa.2010.01.023
Google Scholar
[23]
Mo, L.T., Huurman, M., Wu, S.P., Molenaar, A.A.A. 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete (2008) Finite Elements in Analysis and Design, 44(4), p.186–196.
DOI: 10.1016/j.finel.2007.11.012
Google Scholar
[24]
Gorshkov, A.S., Vatin, N.I. Properties of the wall structures made of autoclaved cellular concrete products on the polyurethane foam adhesive (2013) Magazine of civil engineering, 5, pp.5-19.
DOI: 10.5862/mce.40.1
Google Scholar
[25]
Gorshkov, A.S., Vatin, N.I. The innovative technology for erection of wall constructions of autoclaved aerated concrete blocks on polyurethane adhesive (2013) Construction of unique buildings and structures, 8, pp.20-28.
Google Scholar
[26]
Nikitin, A.N., Ivankina, T.I., Sobolev, G.A., Sheffcyuk, K., Frishbutter, A., Valter, K. Neutron-graphics research of in-crystal deformations and stresses in a marble specimen at high temperatures and time loads (2004).
Google Scholar
[27]
Frishbutter, A., Neov, D., Scheffzuk, C., Vrana, M., Walther, K. Lattice strain measurements on sandstones under load using neutron diffraction (2000) Journal of Structural Geology, 22(11-12), pp.1587-1600.
DOI: 10.1016/s0191-8141(00)00110-3
Google Scholar
[28]
Darling, T. W, Tencate, J. A, Brown, D.W., Clausen, B., Vogel, S.C. Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior (2004) Geophysical Research Letters, 31(6), pp.1-4.
DOI: 10.1029/2004gl020463
Google Scholar
[29]
Bruno, G., Efremov, A.M., Levandovskiy, A.N., Pozdnyakova, I., Hughes, D.J., Clausen, B. Thermal and Mechanical Response of Industrial Porous Ceramics (2010) Materials Science Forum, 652, pp.191-196.
DOI: 10.4028/www.scientific.net/msf.652.191
Google Scholar
[30]
Kouznetsova, V.G. Computational homogenization for the multi-scale analysis of multi-phase materials (2002) Technische Universiteit Eindhoven.
Google Scholar
[31]
Semenov, A.S., Avrunin, A.S., Grishchenko, A.I., Melnikov, B.E., Doktorov, A.A. Influence of nanoscale morphological characteristics on the mechanical properties of bone tissue (2013).
Google Scholar