[1]
Information on http: /www. mc-tlt. ru/goods/zbr-65psh/konstrukciya-uzla-skrepleniya. html.
Google Scholar
[2]
Information on http: /www. mc-tlt. ru.
Google Scholar
[3]
Eskandari, J.J., Noorabadi, M., Namdaran, N., Taghavian, H., Mohammadi, M., Namdaran, N. Effect of Fiber Volume Fraction on Stress Distribution in Polypropylene Matrix Composites (2013) Science and today's world, 2(2), pp.214-225.
Google Scholar
[4]
Rezaei, F., Yunus, R., Ibrahim, N.A. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites (2009) Materials and Design, 30, p.260–263.
DOI: 10.1016/j.matdes.2008.05.005
Google Scholar
[5]
Karsli, N.G., Aytac, A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites (2013) Composites Part B: Engineering, 51, p.270–275.
DOI: 10.1016/j.compositesb.2013.03.023
Google Scholar
[6]
Thomason, J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene. 6. The properties of injection moulded long fibre PP at high fibre content (2005).
DOI: 10.1016/j.compositesa.2004.11.004
Google Scholar
[7]
Kaiser, J. -M., Stommel, M. Inverse determination of modeling parameters to consider inhomogeneities of semicrystalline thermoplastics in structure simulations (2013) Archive of Applied Mechanics, 83(6), pp.889-897.
DOI: 10.1007/s00419-012-0724-3
Google Scholar
[8]
Kammoun, S., Brassart, L., Robert, G., Doghri, I., Delannay, L. Micromechanical modeling of short glassfiber reinforced thermoplastics–Isotropic damage of pseudograins (2011) AIP Conference Proceedings, 1353, pp.972-977.
DOI: 10.1063/1.3589642
Google Scholar
[9]
Mori, T., Tanaka, K. Average Stress in Matrix and Average elastic Energy of Materials with misfitting Inclusions (1973) Acta Metallurgica, 21, pp.571-574.
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[10]
Pierard, O., Friebel, C., Doghri, I. Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation (2004) Composites Science and Technology, 64, p.1587–1603.
DOI: 10.1016/j.compscitech.2003.11.009
Google Scholar
[11]
Grishenko, A.I., Semenov, A.S., Semenov, S.G., Melnikov, B.E. Influence of structural parameters of the masonry on effective elastic properties and strength (2014) Magazine of Civil Engineering, 5, pp.95-106.
DOI: 10.5862/mce.49.10
Google Scholar
[12]
Advani, S.G., Tucker, C.L. The use of tensors to describe and predict fiber orientation in short fiber composites (1987) Rheology, 31, pp.751-784.
DOI: 10.1122/1.549945
Google Scholar
[13]
Giroud, T., Clarke, A., Eberhardt, C. Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics (2005) Polymer, 46, pp.6719-6725.
DOI: 10.1016/j.polymer.2005.05.026
Google Scholar
[14]
Van Paepegem, W., Degrieck, J. Calculation of damage-dependent directional failure indices from the Tsai–Wu static failure criterion (2003) Composites Science and Technology, 63, pp.305-310.
DOI: 10.1016/s0266-3538(02)00251-8
Google Scholar
[15]
Nekliudova, E.A., Semenov, A.S., Melnikov, B.E., Semenov, S.G. Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material (2014) Magazine of Civil Engineering, 3, pp.25-39.
DOI: 10.5862/mce.47.3
Google Scholar
[16]
Melnikov, B.E., Semenov, A.S. Creation and application of hierarchical sequence of material models for numerical analysis of elasto-plastic structures (1996) Applied Mathematics and Mechanics, 76(2), pp.615-616.
Google Scholar