Comparison of Rate-Dependent Ferroelectroelastic Phenomenological Models for Prediction of PZT Creep

Article Preview

Abstract:

The time-dependent effects of piezoceramic material under the constant electric field are analyzed. The new rate-dependent ferroelectroelastic phenomenological model is proposed and compared with known models and experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

961-966

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fett, T., Thun, G. Determination of Room-temperature Tensile Creep of PZT (1998) J. Materials Science Letter, 17, p.1929-(1931).

Google Scholar

[2] Zhou, D., Kamlah, M. Determination of room-temperature creep of soft lead zirconate titanate piezoceramics under static electric fields (2005) J. Appl. Phys., 98, pp.104-107.

DOI: 10.1063/1.2136207

Google Scholar

[3] Zhou, D., Kamlah, M. Room-temperature creep of soft PZT under static electrical and compressive stress loading (2006) Acta Materialia, 54, pp.1389-1396.

DOI: 10.1016/j.actamat.2005.11.010

Google Scholar

[4] Liu, Q.D., Huber, J.E. Creep in ferroelectrics due to unipolar electrical loading (2006) Journal of the European Ceramic Society, 26, pp.2799-2806.

DOI: 10.1016/j.jeurceramsoc.2005.07.051

Google Scholar

[5] Schaeufele, A., Haerdtl, K.H. Ferroelastic Properties of Lead Zirconate Titanate Ceramics (1996) J. Amer. Ceramic Soc., 79, pp.2637-2640.

DOI: 10.1111/j.1151-2916.1996.tb09027.x

Google Scholar

[6] Guillon, O., Thiebaud, F., Delobelle, P., Perreux, D. Compressive creep of PZT ceramics: experiments and modeling (2004) Journal of the European Ceramic Society, 24, p.2547–2552.

DOI: 10.1016/j.jeurceramsoc.2003.08.018

Google Scholar

[7] Belov, A. Yu., Kreher, W.S. Creep in Soft PZT: The Effect of Internal Fields (2009) Ferroelectrics, 391, p.12–21.

DOI: 10.1080/00150190903001052

Google Scholar

[8] Landis, C.M. Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics (2002) J. Mech. Phys., 50, p.127–152.

DOI: 10.1016/s0022-5096(01)00021-7

Google Scholar

[9] Miehe, C., Rosato, D. A rate-dependent incremental variational formulation of ferroelectricity (2011) International Journal of Engineering Science, 49, p.466–496.

DOI: 10.1016/j.ijengsci.2010.11.003

Google Scholar

[10] Muliana, A. Time dependent behavior of ferroelectric materials undergoing changes in their material properties with electric field and temperature (2011) International Journal of Solids and Structures, 48, p.2718–2731.

DOI: 10.1016/j.ijsolstr.2011.05.021

Google Scholar

[11] Semenov, A.S., Liskowsky, A.C., Balke, H. Return mapping algorithms and consistent tangent operators in ferroelectroelasticity (2010) International Journal for Numerical Methods in Engineering, 81, p.1298–1340.

DOI: 10.1002/nme.2728

Google Scholar

[12] Semenov, A.S., Liskowsky, A.C., Neumeister, P., Balke, H. Effective computational methods for the modeling of ferroelectroelastic hysteresis behavior (2011).

DOI: 10.1007/978-90-481-9887-0_5

Google Scholar