[1]
Fett, T., Thun, G. Determination of Room-temperature Tensile Creep of PZT (1998) J. Materials Science Letter, 17, p.1929-(1931).
Google Scholar
[2]
Zhou, D., Kamlah, M. Determination of room-temperature creep of soft lead zirconate titanate piezoceramics under static electric fields (2005) J. Appl. Phys., 98, pp.104-107.
DOI: 10.1063/1.2136207
Google Scholar
[3]
Zhou, D., Kamlah, M. Room-temperature creep of soft PZT under static electrical and compressive stress loading (2006) Acta Materialia, 54, pp.1389-1396.
DOI: 10.1016/j.actamat.2005.11.010
Google Scholar
[4]
Liu, Q.D., Huber, J.E. Creep in ferroelectrics due to unipolar electrical loading (2006) Journal of the European Ceramic Society, 26, pp.2799-2806.
DOI: 10.1016/j.jeurceramsoc.2005.07.051
Google Scholar
[5]
Schaeufele, A., Haerdtl, K.H. Ferroelastic Properties of Lead Zirconate Titanate Ceramics (1996) J. Amer. Ceramic Soc., 79, pp.2637-2640.
DOI: 10.1111/j.1151-2916.1996.tb09027.x
Google Scholar
[6]
Guillon, O., Thiebaud, F., Delobelle, P., Perreux, D. Compressive creep of PZT ceramics: experiments and modeling (2004) Journal of the European Ceramic Society, 24, p.2547–2552.
DOI: 10.1016/j.jeurceramsoc.2003.08.018
Google Scholar
[7]
Belov, A. Yu., Kreher, W.S. Creep in Soft PZT: The Effect of Internal Fields (2009) Ferroelectrics, 391, p.12–21.
DOI: 10.1080/00150190903001052
Google Scholar
[8]
Landis, C.M. Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics (2002) J. Mech. Phys., 50, p.127–152.
DOI: 10.1016/s0022-5096(01)00021-7
Google Scholar
[9]
Miehe, C., Rosato, D. A rate-dependent incremental variational formulation of ferroelectricity (2011) International Journal of Engineering Science, 49, p.466–496.
DOI: 10.1016/j.ijengsci.2010.11.003
Google Scholar
[10]
Muliana, A. Time dependent behavior of ferroelectric materials undergoing changes in their material properties with electric field and temperature (2011) International Journal of Solids and Structures, 48, p.2718–2731.
DOI: 10.1016/j.ijsolstr.2011.05.021
Google Scholar
[11]
Semenov, A.S., Liskowsky, A.C., Balke, H. Return mapping algorithms and consistent tangent operators in ferroelectroelasticity (2010) International Journal for Numerical Methods in Engineering, 81, p.1298–1340.
DOI: 10.1002/nme.2728
Google Scholar
[12]
Semenov, A.S., Liskowsky, A.C., Neumeister, P., Balke, H. Effective computational methods for the modeling of ferroelectroelastic hysteresis behavior (2011).
DOI: 10.1007/978-90-481-9887-0_5
Google Scholar