[1]
Park, S.B., Sun, C.T. Fracture criteria for piezoelectric ceramics (1995) J. Am. Ceram. Soc., 78(6), p.1475–1480.
Google Scholar
[2]
Tobin, A.G., Pak, Y.E. Effect of electric fields on fracture behavior of PZT ceramics (1993) Proc. SPIE Int. Soc. Opt. Eng., 1916, p.78–86.
Google Scholar
[3]
Fu, R., Zhang, T.Y. Effects of an electric field on the fracture toughness of poled lead zirkonate titanate ceramics (2000) J. Am. Ceram. Soc., 83(5)., p.1215–1218.
DOI: 10.1111/j.1151-2916.2000.tb01356.x
Google Scholar
[4]
Schneider, G.A., Heyer, V. Influence of the electric field on Vickers indentation crack growth in BaTiO3 (1999) J. Eur. Ceram. Soc., 19., p.1299–1306.
DOI: 10.1016/s0955-2219(98)00424-5
Google Scholar
[5]
Wang, H., Singh, R.N. Crack propagation in piezoelectric ceramics: effects of applied electric fields (1997) J. Appl. Phys., 81(11)., p.7471–7479.
DOI: 10.1063/1.365290
Google Scholar
[6]
Jelitto, H., Keßler, H., Schneider, G.A., Balke, H. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads (2005) Journal of the European Ceramic Society, 25, pp.749-757.
DOI: 10.1016/j.jeurceramsoc.2004.02.022
Google Scholar
[7]
Gehrig, F., Jelitto, H., Schneider, G.A. Fracture criterion for a conducting crack in poled PZT-PIC 151 investigated by stable crack growth (2008) Acta Materialia, 56, p.222–229.
DOI: 10.1016/j.actamat.2007.09.015
Google Scholar
[8]
Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R. Fracture mechanics for piezoelectric ceramics (1992) J. Mech. Phys. Solid., 40, p.739–65.
Google Scholar
[9]
Hao, H., Shen, Z.Y. A new electric boundary condition of electric fracture mechanics and its applications (1992) Eng. Fract. Mech., 47(6), p.793–802.
DOI: 10.1016/0013-7944(94)90059-0
Google Scholar
[10]
Landis, C.M. Energetically consistent boundary conditions for electromechanical fracture (1992) International Journal of Solids and Structures., 41, p.6291–6315.
DOI: 10.1016/j.ijsolstr.2004.05.062
Google Scholar
[11]
Ricoeur, A., Kuna, M. Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics (2009) Int. J. Fract., 157, p.3–12.
DOI: 10.1007/s10704-009-9321-z
Google Scholar
[12]
Neumeister, P., Jurisch, M., Jelitto, H., Enger, A.R., Schneider, G.A., Balke, H. Effective permittivity of air-filled cracks in piezoelectric ceramics due to crack bridging (2013) Acta Materialia, 61, p.1061–1069.
DOI: 10.1016/j.actamat.2012.10.006
Google Scholar
[13]
Li, Q., Ricoeur, A., Kuna, M. Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body (2011) Arch. Appl. Mech., 81, p.685–700.
DOI: 10.1007/s00419-010-0443-6
Google Scholar
[14]
Semenov, A.S., Liskowsky, A.C., Neumeister, P., Balke, H. Effective computational methods for the modeling of ferroelectroelastic hysteresis behavior. In M. Kuna, A. Ricoeur (Eds. ) (2011).
DOI: 10.1007/978-90-481-9887-0_5
Google Scholar
[15]
Semenov, A.S., Liskowsky, A.C., Balke, H. Return mapping algorithms and consistent tangent operators in ferroelectroelasticity (2010) International Journal for Numerical Methods in Engineering, Vol. 81, p.1298–1340.
DOI: 10.1002/nme.2728
Google Scholar
[16]
Semenov, A.S., Kessler, H., Liskowsky, A., Balke, H. On a vector potential formulation for 3D electromechanical finite element analysis (2006) Com. Numerical Methods in Engineering, Vol. 22, pp.357-375.
DOI: 10.1002/cnm.818
Google Scholar