Fracture Analysis of Piezoceramic CT-Specimen for Different Types of Crack Face Boundary Conditions

Article Preview

Abstract:

At the moment a problem of fracture and lifetime estimation for piezoelectric materials is not completely solved. The paper considers fundamentals of linear fracture electromechanics, fracture parameters and fracture criteria. The main difference from linear mechanics is crack face boundary conditions taking into account relative permeability of media inside the crack gap and coulomb traction. Different types of crack face boundary conditions and their numerical implementation are described. The paper presents results of finite element modeling of fracture toughness experiments on the compact tension specimens under combined electromechanical loading. Different types of crack face boundary conditions were tested and comparison of fracture parameters and fracture criteria was carried out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

949-954

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Park, S.B., Sun, C.T. Fracture criteria for piezoelectric ceramics (1995) J. Am. Ceram. Soc., 78(6), p.1475–1480.

Google Scholar

[2] Tobin, A.G., Pak, Y.E. Effect of electric fields on fracture behavior of PZT ceramics (1993) Proc. SPIE Int. Soc. Opt. Eng., 1916, p.78–86.

Google Scholar

[3] Fu, R., Zhang, T.Y. Effects of an electric field on the fracture toughness of poled lead zirkonate titanate ceramics (2000) J. Am. Ceram. Soc., 83(5)., p.1215–1218.

DOI: 10.1111/j.1151-2916.2000.tb01356.x

Google Scholar

[4] Schneider, G.A., Heyer, V. Influence of the electric field on Vickers indentation crack growth in BaTiO3 (1999) J. Eur. Ceram. Soc., 19., p.1299–1306.

DOI: 10.1016/s0955-2219(98)00424-5

Google Scholar

[5] Wang, H., Singh, R.N. Crack propagation in piezoelectric ceramics: effects of applied electric fields (1997) J. Appl. Phys., 81(11)., p.7471–7479.

DOI: 10.1063/1.365290

Google Scholar

[6] Jelitto, H., Keßler, H., Schneider, G.A., Balke, H. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads (2005) Journal of the European Ceramic Society, 25, pp.749-757.

DOI: 10.1016/j.jeurceramsoc.2004.02.022

Google Scholar

[7] Gehrig, F., Jelitto, H., Schneider, G.A. Fracture criterion for a conducting crack in poled PZT-PIC 151 investigated by stable crack growth (2008) Acta Materialia, 56, p.222–229.

DOI: 10.1016/j.actamat.2007.09.015

Google Scholar

[8] Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R. Fracture mechanics for piezoelectric ceramics (1992) J. Mech. Phys. Solid., 40, p.739–65.

Google Scholar

[9] Hao, H., Shen, Z.Y. A new electric boundary condition of electric fracture mechanics and its applications (1992) Eng. Fract. Mech., 47(6), p.793–802.

DOI: 10.1016/0013-7944(94)90059-0

Google Scholar

[10] Landis, C.M. Energetically consistent boundary conditions for electromechanical fracture (1992) International Journal of Solids and Structures., 41, p.6291–6315.

DOI: 10.1016/j.ijsolstr.2004.05.062

Google Scholar

[11] Ricoeur, A., Kuna, M. Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics (2009) Int. J. Fract., 157, p.3–12.

DOI: 10.1007/s10704-009-9321-z

Google Scholar

[12] Neumeister, P., Jurisch, M., Jelitto, H., Enger, A.R., Schneider, G.A., Balke, H. Effective permittivity of air-filled cracks in piezoelectric ceramics due to crack bridging (2013) Acta Materialia, 61, p.1061–1069.

DOI: 10.1016/j.actamat.2012.10.006

Google Scholar

[13] Li, Q., Ricoeur, A., Kuna, M. Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body (2011) Arch. Appl. Mech., 81, p.685–700.

DOI: 10.1007/s00419-010-0443-6

Google Scholar

[14] Semenov, A.S., Liskowsky, A.C., Neumeister, P., Balke, H. Effective computational methods for the modeling of ferroelectroelastic hysteresis behavior. In M. Kuna, A. Ricoeur (Eds. ) (2011).

DOI: 10.1007/978-90-481-9887-0_5

Google Scholar

[15] Semenov, A.S., Liskowsky, A.C., Balke, H. Return mapping algorithms and consistent tangent operators in ferroelectroelasticity (2010) International Journal for Numerical Methods in Engineering, Vol. 81, p.1298–1340.

DOI: 10.1002/nme.2728

Google Scholar

[16] Semenov, A.S., Kessler, H., Liskowsky, A., Balke, H. On a vector potential formulation for 3D electromechanical finite element analysis (2006) Com. Numerical Methods in Engineering, Vol. 22, pp.357-375.

DOI: 10.1002/cnm.818

Google Scholar