L-Proline-Catalyzed Synthesis of Amino Thiazoles

Article Preview

Abstract:

An L-proline-catalyzed synthesis of amino thiazoles is described here. Amides and 2-mercapto thiazoles were used as the starting reagents. Various reaction conditions were screened, and the scope of various amides and 2-mercapto thiazoles has been examined. Most of the substrates gave high yields. Compared with traditional synthetic methods with transition metal as catalyst, this protocol uses organocatalyst L-proline. It will reduce environment pollution and save the synthetic cost.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-82

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Siddiqui, M.F. Arshad, W. Ahsan and M.S. Alam: Int. J. Pharm. Sci. Drug Res. Vol. 1 (2009), pp.136-143.

Google Scholar

[2] C.O. Leong, M. Gaskell and E.A. Martin: Brit. J. Cancer. Vol. 88 (2003), pp.470-477.

Google Scholar

[3] S. Arutyunyan and A. Nefzi: J. Comb. Chem. Vol. 12 (2010), p.315.

Google Scholar

[4] V. Bhingolikar, S. Mahalle, S. Bondage and R. Mane: Ind. J. Chem. Vol. 44B (2005), pp.2589-2593.

Google Scholar

[5] C. L. Liu, Z. M. Li and B. Zhong: Flu. Chem. Vol. 125 (2004), pp.1287-1290.

Google Scholar

[6] S.R. Pattan, A.A. Bukitagar and K.G. Bhat: Ind. Drugs, Vol. 44 (2007), pp.689-692.

Google Scholar

[7] S. Mahendra and K. Murahari, H. Gangadasu: Bioorg. Med. Chem. Vol. 15 (2007), pp.3997-4008.

Google Scholar

[8] A. Hantzsch and J.H. Weber: Ber. Dtsch. Chen. Ges. Vol. 20 (1887), pp.3118-3132.

Google Scholar

[9] N. Aberle, J. Catimel and E.C. Nice: Bioorg. Med. Chem. Lett. Vol. 17 (2007), pp.3741-3744.

Google Scholar

[10] H.P. Kaufmarm: Arch. Pharm. Vol. 266 (1928), p.197.

Google Scholar

[11] C.F.H. Allen. Org. Synth. Coll. Vol. 3 (1957), pp.76-78.

Google Scholar

[12] D. Biswanath and V.S. Reddy: J. Mol. Catal. A: Chem. Vol. 252 (2006), p.235.

Google Scholar

[13] C.Y. Cheng and F.C. Jiang: Chin. J. Org. Chem. Vol. 25 (2005), p.826.

Google Scholar

[14] Z.G. Le, J.P. Xu and H.Y. Rao: J. Heterocycl. Chem. Vol. 43 (2006), pp.421-429.

Google Scholar

[15] Y.L. Sun, Y. Zhang and X.H. Cui: Adv. Synth. Catal. Vol. 353 (2011), pp.1174-1178.

Google Scholar

[16] K. S. Pradip, A. Chandrasekhar, S. Sridhar and I. Javed: Tetrahedron, Vol. 49 (2008), p.1.

Google Scholar

[17] M. Schnürch, R. Flasik and A.F. Khan: Eur. J. Org. Chem. Vol. 15 (2006), pp.3283-3307.

Google Scholar

[18] D. Zhan, T. Li, H. Wei, W. Weng, K. Ghandi and Q. Zeng: RSC Adv. Vol. 3 (2013), 9325-9329.

Google Scholar

[19] H. Wei, T. Li, Y. Zhou, L. Zhou and Q. Zeng: Synthesis Vol. 45 (2013), pp.3349-3354.

Google Scholar

[20] D. Qiu, H. Wei, L. Zhou and Q. Zeng: Appl. Organometal. Chem. Vol. 28 (2014), pp.109-112.

Google Scholar

[21] C. Dai, X. Sun, X. Tu, L. Wu, D. Zhan and Q. Zeng: Chem. Comm. Vol. 48 (2012), pp.5367-5369.

Google Scholar