[1]
P Fernandes, A Cruz, B Angelova and H. M Pinheiro, J.M. S Cabral: Microbial conversion of steroid compounds: recent developments. Enzyme and Microbiology Technology, Vol. 32, No. 6, (2003), p.688–705.
DOI: 10.1016/s0141-0229(03)00029-2
Google Scholar
[2]
SS Mohamed, AMH El-Refai, AGM Hashem and HA Ali: Approaches to improve the solubility and availability of progesterone biotransformation by Mucor racemosus. Biocatalyst Biotransformation Vol. 32, No. 3, (2014), p.141–150.
DOI: 10.3109/10242422.2014.894983
Google Scholar
[3]
Z Raphael, L Irena: Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochemical and Biophysical Vol. 1768, No. 6, (2007), pp.1311-1324.
DOI: 10.1016/j.bbamem.2007.03.026
Google Scholar
[4]
OV Egorova, VM Nikolayeva, GV Sukhodolskaya and V Marina: Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. Journal of Molecular Catalysis B: Enzymatic, Vol. 57, No. 1-4, (2009).
DOI: 10.1016/j.molcatb.2008.09.003
Google Scholar
[5]
A Manosroi, S Saowakhon, J Manosroi: Enhancement of and rostadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. Journal of Steroid Biochemistry and Molecular Biology, Vol. 30, No. 1, (2007).
DOI: 10.1016/j.jsbmb.2008.10.003
Google Scholar
[6]
MP Kolomytseva, D Randazzo, BP Baskunov, A Scozzafava, F Briganti and LA Golovleva: Role of surfactants in optimizing fluorine assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469. Bioresource Technology Vol. 100, No. 2, (2009).
DOI: 10.1016/j.biortech.2008.06.059
Google Scholar
[7]
J Jadoun, R Bar: Microbial transformations in a cyclodextrin medium. Part 4. Enzyme vs microbial oxidation of cholesterol. Applied Microbiology and Biotechnology Vol. 40, No. 4, (1993b), p.477–482.
DOI: 10.1007/bf00175734
Google Scholar
[8]
MV Donova, VM Nikolayeva, DV Dovbnya, SA Gulevskaya and NE Suzina: Methyl-β- cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology Vol. 153, (2007), p.1981-(1992).
DOI: 10.1099/mic.0.2006/001636-0
Google Scholar
[9]
M Wang, LT Zhang, YB Shen, YH Ma, Y Zheng and JM Luo: Effects of hydroxypropyl-β- cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. Journal of Molecular Catalysis B: Enzymatic, Vol. 59, No. 1-3, (2009).
DOI: 10.1016/j.molcatb.2008.12.017
Google Scholar
[10]
YB Shen, JT Liang, HN Li and M Wang: Hydroxypropyl-β-cyclodextrin– mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex. Apply Microbiology Biotechnology. DOI 10. 1007/s00253-014-6089-5 (2014).
DOI: 10.1007/s00253-014-6089-5
Google Scholar
[11]
Y Ohtani, T Irie: Eukama K. Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Biochemistry Vol. 186, No. 1-2, (1989), pp.17-22.
Google Scholar