Numerical Study on Damage Mechanism of PRC T-Beam under Close-In Blast Loading

Article Preview

Abstract:

The RC beam damage induced by blast loading might lead to partial or total collapse of bridges. Improved understanding of damage mechanism of the RC beam under blast loading helps advances in the analysis and assessment of bridge damage effects. In this paper, the damage mechanism of prestressed reinforced concrete (PRC) T-beam under close-in blast loading is investigated numerically with a three-dimensional numerical model. The model is validated by comparing simulating results with the experimental data reported by other researchers. Intensive numerical simulations are then carried out to reproduce the damage process of the T-beam as well as to investigate the damage mode and mechanism of the PRC T-beam components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Yi, A.K. Agrawal, M. Ettouney and S. Alampalli. J. Bridge Eng. Vol. 19 (2014), pp.04013023-1.

Google Scholar

[2] Q. Fang and P. Wu. Chin. J. Comput. Mech. Vol. 1 (2003), p.009.

Google Scholar

[3] D.G. Winget, K.A. Marchand and E.B. Williamson. J. Struct. Eng. Vol. 131 (2005), p.1243.

Google Scholar

[4] A.K. Islam and N. Yazdani. Eng. Struct. Vol. 30 (20087, p.922.

Google Scholar

[5] L. Chen, Q. Fang, J. Liu, Y. Zhang and H. Xiang. Int. J. Protective Struct. Vol. 2 (2011), p.295.

Google Scholar

[6] D. Zhang, S. Yao, F. Lu, X. Chen, G. Lin, W. Wang and Y. Lin. Eng. Fai. l Anal. Vol. 33 (2013), p.497.

Google Scholar

[7] Y. Pan, B. Chan and M. Cheung. J. Bridge Eng. Vol. 18 (2013), p.1152.

Google Scholar

[8] W.F. Cofer, D.S. Matthews and D. I. McLean. Shock Vib. Vol. 19 (2012), p.1.

Google Scholar

[9] A. Ibrahim and H. Salim. J. Perform Constr. Facil. Vol. 27 (2013), p.774.

Google Scholar

[10] W. Chen, H. Hao and S. Chen. Mater. Design. Vol. 65 (2015), p.662.

Google Scholar

[11] K. Xu and Y. Lu. Comput. Struct. Vol. 84 (2006), p.431.

Google Scholar

[12] M. Foglar and M. Kovar. Int. J. Impact Eng. Vol. 59 (2013), p.18.

Google Scholar

[13] LS-DYNA. Livermore, California: Livermore Software Technology Corporation; (2007).

Google Scholar

[14] T.J. Holmquist, G.R. Johnson and W.H. Cook. in: The 14th International Symposium on Ballistics. Quebec(1993), p.591.

Google Scholar

[15] L.E. Schwer and Y.D. Murray. in: 7th International LS-DYNA Users Conference (2002), p.16.

Google Scholar

[16] L. Malvar, J. Crawford and K. Morrill. Technical Report TR-99-24(2000), chapter, 3.

Google Scholar

[17] J.M. Magallanes, Y. Wu, L.J. Malvar and J.E. Crawford. in: 11th International LS-DYNA Users Conference(2010), p.3.

Google Scholar

[18] R.M. Brannon and S. Leelavanichkul. in: S. N. Laboratories (Ed. ). Albuquerque, New Mexico and Livermore, California( 2009).

Google Scholar

[19] V.K.R. Yaramada. in: Civil and Mechanical Engineering. University of Missouri Kansas City, Kansas City(2010).

Google Scholar

[20] Béton CE-Id. CEB-FIP model code 1990: design code. Thomas Telford( 1993).

Google Scholar

[21] L.J. Malvar, Crawford JE. Dynamic increase factors for concrete. DTIC Document( 1998).

Google Scholar

[22] J.O. Hallquist. LS-DYNA theory manual. Livermore, CA: Livermore Software Technology Corporation( 2006).

Google Scholar

[23] Y.P. Lian, X. Zhang, X. Zhou and Z.T. Ma. Comput. Methods Appl. Mech. Eng. Vol. 200 (2011), p.1659.

Google Scholar

[24] U. Nyström and K. Gylltoft. Int. J. Impact Eng. Vol. 38 (2011), p.95.

Google Scholar

[25] A.M. Coughlin, E.S. Musselman, A.J. Schokker and D.G. Linzell. Int. J. Impact Eng. Vol. 37 (2010), p.521.

Google Scholar

[26] E.K. Tang and H. Hao. Eng. Struct. Vol. 32 (2010), p.3180.

Google Scholar

[27] J. Li and H. Hao. Int. J. Impact Eng. Vol. 68 (2014), p.41.

Google Scholar