[1]
DIMITRI, P. S., & KHADA, N. D. (2003). Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrological Sciences Journal, 48(3), 399-411.
DOI: 10.1623/hysj.48.3.399.45291
Google Scholar
[2]
Sajikumar, N., & Thandaveswara, B. (1999). A non-linear rainfall–runoff model using an artificial neural network. Journal of Hydrology, 216(1), 32-55.
DOI: 10.1016/s0022-1694(98)00273-x
Google Scholar
[3]
Xia, J., O'Connor, K. M., Kachroo, R. K., & Liang, G. C. (1997).
Google Scholar
[4]
Brath, A. (1993). Adaptive calibration of a conceptual model for flash flood forecasting. Water resources research, 29(8), 2561.
DOI: 10.1029/93wr00665
Google Scholar
[5]
Houghton-Carr, H. A. (1999). Assessment criteria for simple conceptual daily rainfall-runoff models. Hydrological Sciences Journal, 44(2), 237-261. doi: 10. 1080/02626669909492220.
DOI: 10.1080/02626669909492220
Google Scholar
[6]
Dong, Y., & Yuan, J. (2008). The Retrospect and Looking into the Future of Watershed Hydrological Model. Water resources research, 34(3), 4.
Google Scholar
[7]
Blackie, J., & Eeles, C. (1985). Lumped catchment models. Hydrological Forecasting, John Wiley and Sons, New York, New York 1985. pp.311-345, 6 fig, 1 tab, 38 ref.
Google Scholar
[8]
Shi, J., & Chen, X. (2006). Situation in the Research on Watershed Hydrologic Models. Hydrological Forecasting, John Wiley and Sons, New York, New York 1985. pp.311-345, 6 fig, 1 tab, 38 ref., 26(1), 6.
Google Scholar
[9]
Stewart, M. D., Bates, P. D., Anderson, M. G., Price, D. A., & Burt, T. P. (1999). Modelling floods in hydrologically complex lowland river reaches. Journal of Hydrology, 223(1–2), 85-106. doi: 10. 1016/s0022-1694(99)00112-2.
DOI: 10.1016/s0022-1694(99)00112-2
Google Scholar
[10]
PWRI. (2006). Making analysis of snow avalanche phenomena possible!. Available: http: /www. pwri. go. jp/eng/webmag/wm003/kenkyu. html. Last accessed 29th April (2012).
Google Scholar
[11]
Boughton, W. (1968).
Google Scholar
[12]
Yew Gan, T., Dlamini, E. M., & Biftu, G. F. (1997). Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192(1–4), 81-103. doi: 10. 1016/s0022-1694(96)03114.
DOI: 10.1016/s0022-1694(96)03114-9
Google Scholar
[13]
Chiew, F.H.S., Stewardson, M.J. and McMahon, T.A. (1993) Comparison of six rainfall-runoff modelling approaches. Journal of Hydrology, 147: 1 –36.
DOI: 10.1016/0022-1694(93)90073-i
Google Scholar
[14]
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., & Rasmussen, J. (1986). An introduction to the European hydrological system-Systeme Hydrologique Europeen. Journal of Hydrology, 87(1-2), 45-59.
DOI: 10.1016/0022-1694(86)90114-9
Google Scholar
[15]
Lu, Y., Yang, Y., Fan, J., & Liu, C. (2008). Development and comparison of catchment hydrological models: From infancy to maturity. CHINESE JOURNAL OF ECO-AGRICULTURE, 16(5), 7.
DOI: 10.3724/sp.j.1011.2008.01331
Google Scholar
[16]
Franchini, M., Galeati, G., & Berra, S. (1998). Global optimization techniques for the calibration of conceptual rainfall-runoff models. Hydrological Sciences Journal, 43(3), 443-458.
DOI: 10.1080/02626669809492137
Google Scholar
[17]
Woolhiser, D. A. (1996). Search for Physically Based Runoff Model—A Hydrologic El Dorado? [Article]. Journal of Hydraulic Engineering, 122(3), 122.
DOI: 10.1061/(asce)0733-9429(1996)122:3(122)
Google Scholar
[18]
Cooper, V. A., Nguyen, V. T. V., & Nicell, J. A. (1997). Evaluation of global optimization methods for conceptual rainfall-runoff model calibration. Water Science and Technology, 36(5), 53-60. doi: 10. 1016/s0273-1223(97)00461-7.
DOI: 10.2166/wst.1997.0163
Google Scholar
[19]
Singh, V. P., & Frevert, D. (2002). Mathematical modeling of watershed hydrology. Mathematical models of large watershed hydrology, 1-22.
Google Scholar
[20]
Todini, E. (1988). Rainfall-runoff modeling—Past, present and future. Journal of Hydrology, 100(1), 341-352.
DOI: 10.1016/0022-1694(88)90191-6
Google Scholar