[1]
M. I. Katsnelson, A. K. Geim, Electron scattering on microscopic corrugations in graphene, J. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366(2008) No. 1863 195-204.
DOI: 10.1098/rsta.2007.2157
Google Scholar
[2]
J. H. Chen, C. Jang, S. Xiao, Intrinsic and extrinsic performance limits of graphene devices on SiO2, J. Nature Nanotechnology. 3 (2008) No. 4, pp.206-209.
DOI: 10.1038/nnano.2008.58
Google Scholar
[3]
J. Martin, N. Akerman, G. Ulbricht, Observation of electron–hole puddles in graphene using a scanning single-electron transistor, J. Nature Physics. 4 (2007) No. 2, pp.144-148.
DOI: 10.1038/nphys781
Google Scholar
[4]
R. Decker, Y. Wang, V. W. Brar, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, J. Nano Letters. 11 (2011) No. 6, pp.2291-2295.
DOI: 10.1021/nl2005115
Google Scholar
[5]
J. Y. Tan, A. Avsar, J. Balakrishnan, Electronic transport in graphene-based heterostructures, J. Applied Physics Letters. 104 (2014) No. 8 183504.
Google Scholar
[6]
H. Shi, H. Pan, Y. W. Zhang, Electronic and magnetic properties of graphene/fluorographene superlattices, J. The Journal of Physical Chemistry C. 116(2012) No. 34, 18278-18283.
DOI: 10.1021/jp305441b
Google Scholar
[7]
A. V. Kretinin, Y. Cao, J. S. Tu, Electronic properties of graphene encapsulated with different 2D atomic crystals, J. Nano Letters. 14 (2014) No. 6, p.3270–3276.
Google Scholar
[8]
A. V. Kretinin, Y. Cao, J. S. Tu, Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals, J. Nano Lett. 14 (2014), p.3270−3276.
Google Scholar
[9]
G. Fiori, A. Betti, S. Bruzzone, Lateral Graphene–hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors, J. ACS Nano. 6 (2012) No. 3, pp.2642-2648.
DOI: 10.1021/nn300019b
Google Scholar
[10]
J. S. Moon, H. C. Seo, F. Stratan, Lateral graphene heterostructure field-effect transistor, J. Electron Device Letters. 34 (2013) No. 9, pp.1190-1192.
DOI: 10.1109/led.2013.2270368
Google Scholar
[11]
L. Britnell, R. V. Gorbachev, R. Jalil, Field-effect tunneling transistor based on vertical graphene heterostructures, J. Science. 335 (2012) No. 6071, pp.947-950.
DOI: 10.1126/science.1218461
Google Scholar
[12]
S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures, J. ACS Nano. 7 (2013) No. 4, pp.3246-3252.
DOI: 10.1021/nn3059136
Google Scholar
[13]
L. Britnell, R. M. Ribeiro, A. Eckmann A, Strong light-matter interactions in heterostructures of atomically thin films, J. Science. 340 (2013) No. 6138, pp.1311-1314.
DOI: 10.1126/science.1235547
Google Scholar
[14]
T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, J. Nature Photonics. 4 (2010) No. 5, pp.297-301.
DOI: 10.1038/nphoton.2010.40
Google Scholar
[15]
K. Roy, M. Padmanabhan, S. Goswami, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, J. Nature Nanotechnology. 8 (2013) No. 11, pp.826-830.
DOI: 10.1038/nnano.2013.206
Google Scholar
[16]
W. Zhang, C. P. Chuu, J. K. Huang. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures, J. Scientific Reports. 4 (2014), pp.2045-2322.
DOI: 10.1038/srep03826
Google Scholar
[17]
S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. The Journal of Physical Chemistry C. 116 (2012) No. 48, 25415-25424.
DOI: 10.1021/jp3093786
Google Scholar