Progress in Graphene-Based Two-Dimensional Heterostructures and their Photoelectric Properties

Article Preview

Abstract:

The zero-gap and low absorption in visible light spectrum has limited the potential of graphene potential in photoelectric applications. Two-dimensional (2D) heterostructures have grown up in recent years showing attractive prospects in making new materials with designed properties, and become a promising way to modulate properties of graphene. Recent research progress in 2D heterostructures, including the varieties and properties of van der waals and non-van der waals graphene-based 2D heterostructures separately, is reviewed in this paper. Then the photoelectric applications of graphene-based 2D heterostructures are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-235

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. I. Katsnelson, A. K. Geim, Electron scattering on microscopic corrugations in graphene, J. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366(2008) No. 1863 195-204.

DOI: 10.1098/rsta.2007.2157

Google Scholar

[2] J. H. Chen, C. Jang, S. Xiao, Intrinsic and extrinsic performance limits of graphene devices on SiO2, J. Nature Nanotechnology. 3 (2008) No. 4, pp.206-209.

DOI: 10.1038/nnano.2008.58

Google Scholar

[3] J. Martin, N. Akerman, G. Ulbricht, Observation of electron–hole puddles in graphene using a scanning single-electron transistor, J. Nature Physics. 4 (2007) No. 2, pp.144-148.

DOI: 10.1038/nphys781

Google Scholar

[4] R. Decker, Y. Wang, V. W. Brar, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, J. Nano Letters. 11 (2011) No. 6, pp.2291-2295.

DOI: 10.1021/nl2005115

Google Scholar

[5] J. Y. Tan, A. Avsar, J. Balakrishnan, Electronic transport in graphene-based heterostructures, J. Applied Physics Letters. 104 (2014) No. 8 183504.

Google Scholar

[6] H. Shi, H. Pan, Y. W. Zhang, Electronic and magnetic properties of graphene/fluorographene superlattices, J. The Journal of Physical Chemistry C. 116(2012) No. 34, 18278-18283.

DOI: 10.1021/jp305441b

Google Scholar

[7] A. V. Kretinin, Y. Cao, J. S. Tu, Electronic properties of graphene encapsulated with different 2D atomic crystals, J. Nano Letters. 14 (2014) No. 6, p.3270–3276.

Google Scholar

[8] A. V. Kretinin, Y. Cao, J. S. Tu, Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals, J. Nano Lett. 14 (2014), p.3270−3276.

Google Scholar

[9] G. Fiori, A. Betti, S. Bruzzone, Lateral Graphene–hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors, J. ACS Nano. 6 (2012) No. 3, pp.2642-2648.

DOI: 10.1021/nn300019b

Google Scholar

[10] J. S. Moon, H. C. Seo, F. Stratan, Lateral graphene heterostructure field-effect transistor, J. Electron Device Letters. 34 (2013) No. 9, pp.1190-1192.

DOI: 10.1109/led.2013.2270368

Google Scholar

[11] L. Britnell, R. V. Gorbachev, R. Jalil, Field-effect tunneling transistor based on vertical graphene heterostructures, J. Science. 335 (2012) No. 6071, pp.947-950.

DOI: 10.1126/science.1218461

Google Scholar

[12] S. Bertolazzi, D. Krasnozhon, A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures, J. ACS Nano. 7 (2013) No. 4, pp.3246-3252.

DOI: 10.1021/nn3059136

Google Scholar

[13] L. Britnell, R. M. Ribeiro, A. Eckmann A, Strong light-matter interactions in heterostructures of atomically thin films, J. Science. 340 (2013) No. 6138, pp.1311-1314.

DOI: 10.1126/science.1235547

Google Scholar

[14] T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, J. Nature Photonics. 4 (2010) No. 5, pp.297-301.

DOI: 10.1038/nphoton.2010.40

Google Scholar

[15] K. Roy, M. Padmanabhan, S. Goswami, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices, J. Nature Nanotechnology. 8 (2013) No. 11, pp.826-830.

DOI: 10.1038/nnano.2013.206

Google Scholar

[16] W. Zhang, C. P. Chuu, J. K. Huang. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures, J. Scientific Reports. 4 (2014), pp.2045-2322.

DOI: 10.1038/srep03826

Google Scholar

[17] S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. The Journal of Physical Chemistry C. 116 (2012) No. 48, 25415-25424.

DOI: 10.1021/jp3093786

Google Scholar