Effect of Moisture on Physicochemical Properties of Cellulose Studied by Molecular Dynamics

Article Preview

Abstract:

In this work, the physicochemical property and its Effect of hydrous amorphous cellulose has been studied using molecular dynamics. Both intramolecular and intermolecular hydrogen bonds in cellulose molecules decrease with increasing water content, directly leading to the decline of cellulose cohesive energy density, solubility parameters, and mechanical parameters. High water content in amorphous cellulose gives bigger interchain distance of cellulose molecules, indicating that the intermolecular interaction of cellulose molecules is weakened greatly by water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. A. Prevost, T. V. Oommen, Cellulose insulation in oil-filled power transformers: part I-history and development. IEEE Electr. Insul. M. 22(2006) 28-35.

DOI: 10.1109/mei.2006.1618969

Google Scholar

[2] T. V. Oommen, T. A. Prevost, Cellulose insulation in oil-filled power transformers: part II maintaining insulation integrity and life. IEEE Electr. Insul. M. 22(2006) 5-14.

DOI: 10.1109/mei.2006.1618996

Google Scholar

[3] A. M. Emsley; G. C. Stevens, Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IET Sci. Meas. Technol. 141(1994) 324-334.

DOI: 10.1049/ip-smt:19949957

Google Scholar

[4] H. Qing, L. Mishnaevsky, Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comp. Mater. Sci. 46(2009) 310-320.

DOI: 10.1016/j.commatsci.2009.03.008

Google Scholar

[5] L. E. Lundgaard, W. Hansen, S. Ingebrigtsen, Ageing of Mineral Oil Impregnated Cellulose by Acid Catalysis. IEEE T. Dielect. El. In. 15(2008) 540-546.

DOI: 10.1109/tdei.2008.4483475

Google Scholar

[6] J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R. W. Torget, J. Sugiyama, M. E. Himmel, J. W. Brady, Computer simulation studies of microcrystalline cellulose Iβ. Carbohyd. Res. 341(2006) 138-152.

DOI: 10.1016/j.carres.2005.09.028

Google Scholar

[7] D. M. LeNeveu, R. P. Rand, V. A. Parsegian, Measurement of forces between lecithin bilayers. Nature 259(1976) 601-603.

DOI: 10.1038/259601a0

Google Scholar

[8] S. H. Lee, P. J. Rossky, A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces - a molecular dynamics simulation study. J. Chem. Phys. 100(1994), 3334-3345.

DOI: 10.1063/1.466425

Google Scholar

[9] A. P. Heiner, O. Teleman, Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir, 13(1997) 511-518.

DOI: 10.1021/la960886d

Google Scholar

[10] A. P. Heiner, L. Kuutti, O. Teleman, Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohyd. Res. 306(1998) 205-220.

DOI: 10.1016/s0008-6215(97)10053-2

Google Scholar

[11] K. L. Yin, D. H. Zou, J. Zhong, D. J. Xu, A new method for calculation of elastic properties of anisotropic material by constant pressure molecular dynamics. Comp. Mater. Sci. 38(2007) 538-542.

DOI: 10.1016/j.commatsci.2005.10.008

Google Scholar

[12] A. R. Leach, Molecular Modelling principles and Applications, 2nd ed.; Prentice Hall: England, 2001; pp.353-354.

Google Scholar

[13] K. Mazeau, L. Heux, Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107(2003) 2394-2403.

DOI: 10.1021/jp0219395

Google Scholar

[14] W. Chen, G. C. Lickfield, C. Q. Yang, Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer, 45(2004) 1063-1071.

DOI: 10.1016/j.polymer.2003.11.020

Google Scholar

[15] W. Chen, G. C. Lickfield, C. Q. Yang, Molecular modeling of cellulose in amorphous state part II: effects of rigid and flexible crosslinks on cellulose. Polymer , 45(2004) 7357-7365.

DOI: 10.1016/j.polymer.2004.08.023

Google Scholar

[16] D. N. Theodorou, U. W. Suter, Detailed molecular structure of a vinyl polymer glass. Macromolecules, 18(1985) 1467-1478.

DOI: 10.1021/ma00149a018

Google Scholar

[17] J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed.; John Wiley and Sons: New York, USA, 1999; pp.476-479.

Google Scholar

[18] J. R. Maple, U. Dinur, A. T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. P. Natl. Acad. Sci. USA. 85(1988) 5350-5354.

DOI: 10.1073/pnas.85.15.5350

Google Scholar