[1]
T. A. Prevost, T. V. Oommen, Cellulose insulation in oil-filled power transformers: part I-history and development. IEEE Electr. Insul. M. 22(2006) 28-35.
DOI: 10.1109/mei.2006.1618969
Google Scholar
[2]
T. V. Oommen, T. A. Prevost, Cellulose insulation in oil-filled power transformers: part II maintaining insulation integrity and life. IEEE Electr. Insul. M. 22(2006) 5-14.
DOI: 10.1109/mei.2006.1618996
Google Scholar
[3]
A. M. Emsley; G. C. Stevens, Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IET Sci. Meas. Technol. 141(1994) 324-334.
DOI: 10.1049/ip-smt:19949957
Google Scholar
[4]
H. Qing, L. Mishnaevsky, Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comp. Mater. Sci. 46(2009) 310-320.
DOI: 10.1016/j.commatsci.2009.03.008
Google Scholar
[5]
L. E. Lundgaard, W. Hansen, S. Ingebrigtsen, Ageing of Mineral Oil Impregnated Cellulose by Acid Catalysis. IEEE T. Dielect. El. In. 15(2008) 540-546.
DOI: 10.1109/tdei.2008.4483475
Google Scholar
[6]
J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R. W. Torget, J. Sugiyama, M. E. Himmel, J. W. Brady, Computer simulation studies of microcrystalline cellulose Iβ. Carbohyd. Res. 341(2006) 138-152.
DOI: 10.1016/j.carres.2005.09.028
Google Scholar
[7]
D. M. LeNeveu, R. P. Rand, V. A. Parsegian, Measurement of forces between lecithin bilayers. Nature 259(1976) 601-603.
DOI: 10.1038/259601a0
Google Scholar
[8]
S. H. Lee, P. J. Rossky, A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces - a molecular dynamics simulation study. J. Chem. Phys. 100(1994), 3334-3345.
DOI: 10.1063/1.466425
Google Scholar
[9]
A. P. Heiner, O. Teleman, Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir, 13(1997) 511-518.
DOI: 10.1021/la960886d
Google Scholar
[10]
A. P. Heiner, L. Kuutti, O. Teleman, Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohyd. Res. 306(1998) 205-220.
DOI: 10.1016/s0008-6215(97)10053-2
Google Scholar
[11]
K. L. Yin, D. H. Zou, J. Zhong, D. J. Xu, A new method for calculation of elastic properties of anisotropic material by constant pressure molecular dynamics. Comp. Mater. Sci. 38(2007) 538-542.
DOI: 10.1016/j.commatsci.2005.10.008
Google Scholar
[12]
A. R. Leach, Molecular Modelling principles and Applications, 2nd ed.; Prentice Hall: England, 2001; pp.353-354.
Google Scholar
[13]
K. Mazeau, L. Heux, Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 107(2003) 2394-2403.
DOI: 10.1021/jp0219395
Google Scholar
[14]
W. Chen, G. C. Lickfield, C. Q. Yang, Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer, 45(2004) 1063-1071.
DOI: 10.1016/j.polymer.2003.11.020
Google Scholar
[15]
W. Chen, G. C. Lickfield, C. Q. Yang, Molecular modeling of cellulose in amorphous state part II: effects of rigid and flexible crosslinks on cellulose. Polymer , 45(2004) 7357-7365.
DOI: 10.1016/j.polymer.2004.08.023
Google Scholar
[16]
D. N. Theodorou, U. W. Suter, Detailed molecular structure of a vinyl polymer glass. Macromolecules, 18(1985) 1467-1478.
DOI: 10.1021/ma00149a018
Google Scholar
[17]
J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed.; John Wiley and Sons: New York, USA, 1999; pp.476-479.
Google Scholar
[18]
J. R. Maple, U. Dinur, A. T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. P. Natl. Acad. Sci. USA. 85(1988) 5350-5354.
DOI: 10.1073/pnas.85.15.5350
Google Scholar