[1]
J.P. Longtin, B. Badran, and F.M. Gerner, A one-dimensional model of a micro heat pipe during steady-state operation. Journal of Heat Transfer 166 (1994) pp.709-715.
DOI: 10.1115/1.2910926
Google Scholar
[2]
D. Khrustalev, and A. Faghri, Thermal Analysis of a Micro Heat Pipe. Journal of Heat Transfer 116 (1994) pp.189-198.
DOI: 10.1115/1.2910855
Google Scholar
[3]
D. Khrustalev, and A. Faghri, Thermal characteristics of conventional and flat miniature axially grooved heat pipes. Journal of Heat transfer 117 (1995) pp.1048-1054.
DOI: 10.1115/1.2836280
Google Scholar
[4]
H.B. Ma, and G.P. Peterson, The minimum meniscus radius and capillary heat transport limit in micro heat pipes. Journal of heat transfer 120 (1998) pp.227-233.
DOI: 10.1115/1.2830046
Google Scholar
[5]
D. Khrustalev, and A. Faghri, Coupled liquid and vapor flow in miniature passages with micro grooves. Journal of Heat Transfer 121 (1999) pp.729-733.
DOI: 10.1115/1.2826042
Google Scholar
[6]
S.J. Kim, J. Ki Seo, and K. Hyung Do, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. International Journal of Heat and Mass Transfer 46 (2003).
DOI: 10.1016/s0017-9310(02)00504-5
Google Scholar
[7]
B. Suman, S. De, and S. DasGupta, A model of the capillary limit of a micro heat pipe and prediction of the dry-out length. International journal of heat and fluid flow 26 (2005) pp.495-505.
DOI: 10.1016/j.ijheatfluidflow.2004.09.006
Google Scholar
[8]
K.H. Do, S.J. Kim, and S.V. Garimella, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. International Journal of Heat and Mass Transfer 51 (2008) pp.4637-4650.
DOI: 10.1016/j.ijheatmasstransfer.2008.02.039
Google Scholar
[9]
F. Lefevre, R. Rulliere, G. Pandraud, and M. Lallemand, Prediction of the temperature field in flat plate heat pipes with micro-grooves-Experimental validation. International Journal of Heat and Mass Transfer 51 (2008) pp.4083-4094.
DOI: 10.1016/j.ijheatmasstransfer.2007.12.007
Google Scholar
[10]
Y.M. Hung, and Q.B. Seng, Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer 54 (2011) 1198-1209.
DOI: 10.1016/j.ijheatmasstransfer.2010.09.070
Google Scholar
[11]
Y.M. Hung, K. Tio, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction. International Communications in Heat and Mass Transfer 39 (2012) pp.1146-1153.
DOI: 10.1016/j.icheatmasstransfer.2012.07.009
Google Scholar
[12]
N. Chauris, V. Ayel, Y. Bertin, C. Romestant, and D. Eysseric, Hydraulic modelling of a flat heat pipe with two different groove shapes and a small vapour section. Applied Thermal Engineering 61 (2013) pp.311-326.
DOI: 10.1016/j.applthermaleng.2013.07.029
Google Scholar
[13]
B.R. Babin, G.P. Peterson, and D. Wu, Steady-state modeling and testing of a micro heat pipe. Journal of Heat Transfer 112 (1990) pp.595-601.
DOI: 10.1115/1.2910428
Google Scholar
[14]
G.P. Peterson, A.B. Duncan, and M.H. Weichold, Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers. Journal of Heat Transfer 115 (1993) pp.751-756.
DOI: 10.1115/1.2910747
Google Scholar
[15]
H.B. Ma, and G.P. Peterson, Experimental investigation of the maximum heat transport in triangular grooves. Journal of heat transfer 118 (1996) pp.740-746.
DOI: 10.1115/1.2822694
Google Scholar
[16]
Y. Cao, M. Gao, J.E. Beam, and B. Donovan, Experiments and Analyses of Flat Miniature Heat Pipes. Journal of Thermophysics and Heat Transfer 11 (1997) pp.158-164.
DOI: 10.2514/2.6247
Google Scholar
[17]
R. Hopkins, and A. Faghri, Flat Miniature Heat Pipes With Micro Capillary Grooves. Journal of Heat Transfer 121 (1999) pp.102-109.
DOI: 10.1115/1.2825922
Google Scholar
[18]
L.C. Zhang, T.Z. Ma, Z.F. Zhang, and X.S. Ge, Experimental investigation on thermal characteristics of flat miniature axially grooved heat pipes. Journal of Engineering Thermophysics 24 (2003) pp.493-495.
Google Scholar
[19]
S. Lips, F. Lefevre, and J. Bonjour, Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. International Journal of Heat and Mass Transfer 53 (2010) pp.694-702.
DOI: 10.1016/j.ijheatmasstransfer.2009.10.022
Google Scholar
[20]
F. Lefevre, R. Rulliere, S. Lips, and J. Bonjour, Confocal Microscopy for Capillary Film Measurements in a Flat Plate Heat Pipe. Journal of heat transfer 132 (2010) 031502.
DOI: 10.1115/1.4000057
Google Scholar
[21]
S. Wong, and C. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe. International Journal of Heat and Mass Transfer 55 (2012) pp.2229-2234.
DOI: 10.1016/j.ijheatmasstransfer.2012.01.045
Google Scholar
[22]
J.C. Hsieh, H.J. Huang, and S.C. Shen, Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module. Microelectronics Reliability 52 (2012) pp.1071-1079.
DOI: 10.1016/j.microrel.2011.11.016
Google Scholar
[23]
Z.H. Hu, W. Chen, T. Fu, and B.W. Chen, Experimental study of vacuum impact on the performance of micro heat pipe. Modern Manufacturing Engineering (2013) pp.97-101.
Google Scholar