Research on Heat and Mass Transfer of Flat Grooved Heat Pipes

Article Preview

Abstract:

Flat grooved heat pipes, which are especially useful in obtaining a high degree of temperature uniformity on flat surfaces, have been successfully used in the temperature control of electronic systems, however, the mechanisms governing the flow and heat transfer of this kind of heat pipes are still under scrutiny as some reported results cannot be reproduced by others or some assumptions have been proven to be unreasonable or ideal. The theoretical and experimental studies on flat grooved heat pipes and introduce work performed on modeling flat grooved heat pipes are reviewed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-602

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Longtin, B. Badran, and F.M. Gerner, A one-dimensional model of a micro heat pipe during steady-state operation. Journal of Heat Transfer 166 (1994) pp.709-715.

DOI: 10.1115/1.2910926

Google Scholar

[2] D. Khrustalev, and A. Faghri, Thermal Analysis of a Micro Heat Pipe. Journal of Heat Transfer 116 (1994) pp.189-198.

DOI: 10.1115/1.2910855

Google Scholar

[3] D. Khrustalev, and A. Faghri, Thermal characteristics of conventional and flat miniature axially grooved heat pipes. Journal of Heat transfer 117 (1995) pp.1048-1054.

DOI: 10.1115/1.2836280

Google Scholar

[4] H.B. Ma, and G.P. Peterson, The minimum meniscus radius and capillary heat transport limit in micro heat pipes. Journal of heat transfer 120 (1998) pp.227-233.

DOI: 10.1115/1.2830046

Google Scholar

[5] D. Khrustalev, and A. Faghri, Coupled liquid and vapor flow in miniature passages with micro grooves. Journal of Heat Transfer 121 (1999) pp.729-733.

DOI: 10.1115/1.2826042

Google Scholar

[6] S.J. Kim, J. Ki Seo, and K. Hyung Do, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. International Journal of Heat and Mass Transfer 46 (2003).

DOI: 10.1016/s0017-9310(02)00504-5

Google Scholar

[7] B. Suman, S. De, and S. DasGupta, A model of the capillary limit of a micro heat pipe and prediction of the dry-out length. International journal of heat and fluid flow 26 (2005) pp.495-505.

DOI: 10.1016/j.ijheatfluidflow.2004.09.006

Google Scholar

[8] K.H. Do, S.J. Kim, and S.V. Garimella, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. International Journal of Heat and Mass Transfer 51 (2008) pp.4637-4650.

DOI: 10.1016/j.ijheatmasstransfer.2008.02.039

Google Scholar

[9] F. Lefevre, R. Rulliere, G. Pandraud, and M. Lallemand, Prediction of the temperature field in flat plate heat pipes with micro-grooves-Experimental validation. International Journal of Heat and Mass Transfer 51 (2008) pp.4083-4094.

DOI: 10.1016/j.ijheatmasstransfer.2007.12.007

Google Scholar

[10] Y.M. Hung, and Q.B. Seng, Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer 54 (2011) 1198-1209.

DOI: 10.1016/j.ijheatmasstransfer.2010.09.070

Google Scholar

[11] Y.M. Hung, K. Tio, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction. International Communications in Heat and Mass Transfer 39 (2012) pp.1146-1153.

DOI: 10.1016/j.icheatmasstransfer.2012.07.009

Google Scholar

[12] N. Chauris, V. Ayel, Y. Bertin, C. Romestant, and D. Eysseric, Hydraulic modelling of a flat heat pipe with two different groove shapes and a small vapour section. Applied Thermal Engineering 61 (2013) pp.311-326.

DOI: 10.1016/j.applthermaleng.2013.07.029

Google Scholar

[13] B.R. Babin, G.P. Peterson, and D. Wu, Steady-state modeling and testing of a micro heat pipe. Journal of Heat Transfer 112 (1990) pp.595-601.

DOI: 10.1115/1.2910428

Google Scholar

[14] G.P. Peterson, A.B. Duncan, and M.H. Weichold, Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers. Journal of Heat Transfer 115 (1993) pp.751-756.

DOI: 10.1115/1.2910747

Google Scholar

[15] H.B. Ma, and G.P. Peterson, Experimental investigation of the maximum heat transport in triangular grooves. Journal of heat transfer 118 (1996) pp.740-746.

DOI: 10.1115/1.2822694

Google Scholar

[16] Y. Cao, M. Gao, J.E. Beam, and B. Donovan, Experiments and Analyses of Flat Miniature Heat Pipes. Journal of Thermophysics and Heat Transfer 11 (1997) pp.158-164.

DOI: 10.2514/2.6247

Google Scholar

[17] R. Hopkins, and A. Faghri, Flat Miniature Heat Pipes With Micro Capillary Grooves. Journal of Heat Transfer 121 (1999) pp.102-109.

DOI: 10.1115/1.2825922

Google Scholar

[18] L.C. Zhang, T.Z. Ma, Z.F. Zhang, and X.S. Ge, Experimental investigation on thermal characteristics of flat miniature axially grooved heat pipes. Journal of Engineering Thermophysics 24 (2003) pp.493-495.

Google Scholar

[19] S. Lips, F. Lefevre, and J. Bonjour, Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. International Journal of Heat and Mass Transfer 53 (2010) pp.694-702.

DOI: 10.1016/j.ijheatmasstransfer.2009.10.022

Google Scholar

[20] F. Lefevre, R. Rulliere, S. Lips, and J. Bonjour, Confocal Microscopy for Capillary Film Measurements in a Flat Plate Heat Pipe. Journal of heat transfer 132 (2010) 031502.

DOI: 10.1115/1.4000057

Google Scholar

[21] S. Wong, and C. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe. International Journal of Heat and Mass Transfer 55 (2012) pp.2229-2234.

DOI: 10.1016/j.ijheatmasstransfer.2012.01.045

Google Scholar

[22] J.C. Hsieh, H.J. Huang, and S.C. Shen, Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module. Microelectronics Reliability 52 (2012) pp.1071-1079.

DOI: 10.1016/j.microrel.2011.11.016

Google Scholar

[23] Z.H. Hu, W. Chen, T. Fu, and B.W. Chen, Experimental study of vacuum impact on the performance of micro heat pipe. Modern Manufacturing Engineering (2013) pp.97-101.

Google Scholar