A Structure-Based Registration Method for Terrestrial Laser Scanning Data

Article Preview

Abstract:

This paper presents a novel structure-based registration method for terrestrial laser scanning (TLS) data. The line support region (LSR), which fits the 3D line segment, is adopted to describe the scene structure and reduce geometric complexity. Then we employ an evolution computation method to solve the optimization problem of global registration. Our method can be further enhanced by iterative closest points (ICP) or other local registration methods. We demonstrate the robustness of our algorithm on several point cloud sets with varying extent of overlap and degree of noise.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

608-616

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J. Besl and N.D. McKay, A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, (1992), pp.239-256.

DOI: 10.1109/34.121791

Google Scholar

[2] Y. Chen and G. Medioni, Object modeling by registration of multiple range images, Image and vision computing, vol. 10, (1992), pp.145-155.

DOI: 10.1016/0262-8856(92)90066-c

Google Scholar

[3] A. Gressin, C. Mallet, J. Demantké, N. David, Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge, ISPRS J. Photogramm. Remote Sens. vol. 79, (2013), pp.240-251.

DOI: 10.1016/j.isprsjprs.2013.02.019

Google Scholar

[4] A. Myronenko and X. Song, Point set registration: Coherent point drift, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, (2010), pp.2262-2275.

DOI: 10.1109/tpami.2010.46

Google Scholar

[5] C. Papazov and D. Burschka, Stochastic global optimization for robust point set registration, Computer Vision and Image Understanding, vol. 115, (2011), pp.1598-1609.

DOI: 10.1016/j.cviu.2011.05.008

Google Scholar

[6] C. K. Chow, H. T. Tsui, and T. Lee, Surface registration using a dynamic genetic algorithm, Pattern recognition, vol. 37, (2004), pp.105-117.

DOI: 10.1016/s0031-3203(03)00222-x

Google Scholar

[7] D. Aiger, N. J. Mitra, and D. Cohen-Or, 4-points congruent sets for robust pairwise surface registration, in ACM Trans. on Graphics (TOG), (2008), p.85.

DOI: 10.1145/1399504.1360684

Google Scholar

[8] C. Dold and C. Brenner, Registration of terrestrial laser scanning data using planar patches and image data, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, (2006), pp.78-83.

Google Scholar

[9] M. Weinmann, M. Weinmann, S. Hinz, and B. Jutzi, Fast and automatic image-based registration of TLS data, ISPRS J. of Photogramm. and Remote Sens., vol. 66, (2011), pp. S62-S70.

DOI: 10.1016/j.isprsjprs.2011.09.010

Google Scholar

[10] I. Stamos and M. Leordeanu, Automated feature-based range registration of urban scenes of large scale, in Proc. IEEE Conf. on Comput. Vis. Pattern Recog., vol. 2, (2003), pp. II-555-Ii-561.

DOI: 10.1109/cvpr.2003.1211516

Google Scholar

[11] R. Schnabel, R. Wahl, and R. Klein, Efficient RANSAC for Point‐Cloud Shape Detection, in Computer graphics forum, (2007), pp.214-226.

DOI: 10.1111/j.1467-8659.2007.01016.x

Google Scholar

[12] Y. Lin, J. Cheng, C. Wang, B. Chen, F. Jia, Z. Chen, and J. Li, Line Segment Extraction for Large Scale Unorganized Point Clouds, ISPRS J. Photogramm. Remote Sens, To be published.

DOI: 10.1016/j.isprsjprs.2014.12.027

Google Scholar

[13] S. Irani and P. Raghavan, Combinatorial and experimental results for randomized point matching algorithms, Computational Geometry, vol. 12, (1999), pp.17-31.

DOI: 10.1016/s0925-7721(98)00033-9

Google Scholar

[14] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary computation: IOP Publishing Ltd., (1997).

Google Scholar

[15] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, (1975).

Google Scholar

[16] O. Cordón, S. Damas, and J. Santamaría, A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm, Pattern Recognition Letters, vol. 27, (2006), pp.1191-1200.

DOI: 10.1016/j.patrec.2005.07.017

Google Scholar

[17] F. P. Vidal, P. -F. Villard, and E. Lutton, Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy, , IEEE Trans. Biomedical Engineering, vol. 59, (2012), pp.2942-2949.

DOI: 10.1109/tbme.2012.2213251

Google Scholar

[18] N. Mellado, D. Aiger, N. J. Mitra (2014). SUPER 4PCS: Fast Global Point cloud Registration via Smart Indexing. In Proc. of the Symp. on Geometry Processing. Available: http: /geometry. cs. ucl. ac. uk/projects/2014/super4PCS/super4pcs_low. pdf.

DOI: 10.1111/cgf.12446

Google Scholar

[19] Information on http: /geometry. cs. ucl. ac. uk/projects/2014/super4PCS.

Google Scholar