[1]
P.J. Besl and N.D. McKay, A Method for Registration of 3-D Shapes, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, (1992), pp.239-256.
DOI: 10.1109/34.121791
Google Scholar
[2]
Y. Chen and G. Medioni, Object modeling by registration of multiple range images, Image and vision computing, vol. 10, (1992), pp.145-155.
DOI: 10.1016/0262-8856(92)90066-c
Google Scholar
[3]
A. Gressin, C. Mallet, J. Demantké, N. David, Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge, ISPRS J. Photogramm. Remote Sens. vol. 79, (2013), pp.240-251.
DOI: 10.1016/j.isprsjprs.2013.02.019
Google Scholar
[4]
A. Myronenko and X. Song, Point set registration: Coherent point drift, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, (2010), pp.2262-2275.
DOI: 10.1109/tpami.2010.46
Google Scholar
[5]
C. Papazov and D. Burschka, Stochastic global optimization for robust point set registration, Computer Vision and Image Understanding, vol. 115, (2011), pp.1598-1609.
DOI: 10.1016/j.cviu.2011.05.008
Google Scholar
[6]
C. K. Chow, H. T. Tsui, and T. Lee, Surface registration using a dynamic genetic algorithm, Pattern recognition, vol. 37, (2004), pp.105-117.
DOI: 10.1016/s0031-3203(03)00222-x
Google Scholar
[7]
D. Aiger, N. J. Mitra, and D. Cohen-Or, 4-points congruent sets for robust pairwise surface registration, in ACM Trans. on Graphics (TOG), (2008), p.85.
DOI: 10.1145/1399504.1360684
Google Scholar
[8]
C. Dold and C. Brenner, Registration of terrestrial laser scanning data using planar patches and image data, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, (2006), pp.78-83.
Google Scholar
[9]
M. Weinmann, M. Weinmann, S. Hinz, and B. Jutzi, Fast and automatic image-based registration of TLS data, ISPRS J. of Photogramm. and Remote Sens., vol. 66, (2011), pp. S62-S70.
DOI: 10.1016/j.isprsjprs.2011.09.010
Google Scholar
[10]
I. Stamos and M. Leordeanu, Automated feature-based range registration of urban scenes of large scale, in Proc. IEEE Conf. on Comput. Vis. Pattern Recog., vol. 2, (2003), pp. II-555-Ii-561.
DOI: 10.1109/cvpr.2003.1211516
Google Scholar
[11]
R. Schnabel, R. Wahl, and R. Klein, Efficient RANSAC for Point‐Cloud Shape Detection, in Computer graphics forum, (2007), pp.214-226.
DOI: 10.1111/j.1467-8659.2007.01016.x
Google Scholar
[12]
Y. Lin, J. Cheng, C. Wang, B. Chen, F. Jia, Z. Chen, and J. Li, Line Segment Extraction for Large Scale Unorganized Point Clouds, ISPRS J. Photogramm. Remote Sens, To be published.
DOI: 10.1016/j.isprsjprs.2014.12.027
Google Scholar
[13]
S. Irani and P. Raghavan, Combinatorial and experimental results for randomized point matching algorithms, Computational Geometry, vol. 12, (1999), pp.17-31.
DOI: 10.1016/s0925-7721(98)00033-9
Google Scholar
[14]
T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary computation: IOP Publishing Ltd., (1997).
Google Scholar
[15]
J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, (1975).
Google Scholar
[16]
O. Cordón, S. Damas, and J. Santamaría, A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm, Pattern Recognition Letters, vol. 27, (2006), pp.1191-1200.
DOI: 10.1016/j.patrec.2005.07.017
Google Scholar
[17]
F. P. Vidal, P. -F. Villard, and E. Lutton, Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy, , IEEE Trans. Biomedical Engineering, vol. 59, (2012), pp.2942-2949.
DOI: 10.1109/tbme.2012.2213251
Google Scholar
[18]
N. Mellado, D. Aiger, N. J. Mitra (2014). SUPER 4PCS: Fast Global Point cloud Registration via Smart Indexing. In Proc. of the Symp. on Geometry Processing. Available: http: /geometry. cs. ucl. ac. uk/projects/2014/super4PCS/super4pcs_low. pdf.
DOI: 10.1111/cgf.12446
Google Scholar
[19]
Information on http: /geometry. cs. ucl. ac. uk/projects/2014/super4PCS.
Google Scholar