[1]
M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A, vol. 33A, p.477–486, (2002).
DOI: 10.1007/s11661-002-0109-2
Google Scholar
[2]
P. Y. Javad Malekani, Beat Schmutz, Yuantong Gu, Michael Schuetz, Biomaterials in orthopedic bone plates: a riview, in Proceedings of the 2nd Annual International Conference on Materials Science, Metal & Manufacturing (M3 2011), Global Science and Technology Forum, Bali, Indonesia, 2011, p.71.
Google Scholar
[3]
D. BomBac, M. Brojan, P. Fajfar, F. Kosel, and R. Turk, Review of materials in medical applications, RMZ–Materials and Geoenvironment, vol. 54, no. 4, p.471–499, (2007).
Google Scholar
[4]
N. Patel and P. Gohil, A review on biomaterials: scope, applications & human anatomy significance, Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 4, p.91–101, (2012).
Google Scholar
[5]
K. V. Sudhakar and J. Wang, Fatigue Behavior of Vitallium-2000 Plus Alloy for Orthopedic Applications, J. Mater. Eng. Perform., vol. 20, no. 6, p.1023–1027, (2011).
DOI: 10.1007/s11665-010-9716-z
Google Scholar
[6]
M. Geetha, D. Durgalakshmi, and R. Asokamani, Biomedical Implants: Corrosion and its Prevention - A Review, Recent Patents Corros. Sci., vol. 2, p.40–54, (2010).
DOI: 10.2174/1877610801002010040
Google Scholar
[7]
R. M. Pill, Metallic biomaterials, in Biomedical materials, N. Roger, Ed. Springer, 2009, p.41–81.
Google Scholar
[8]
H. Hendra, R. Dadan, and D. J. R. P, Metals for Biomedical Applications, in Biomedical Engineering - From Theory to Applications, P. R. Fazel, Ed. InTech, 2011, p.411–431.
Google Scholar
[9]
C. Balagna, S. Spriano, and M. G. Faga, Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance, Mater. Sci. Eng. C, vol. 32, no. 7, p.1868–1877, (2012).
DOI: 10.1016/j.msec.2012.05.003
Google Scholar
[10]
H. G. Hanumantharaju, H. K. Shivananda, M. G. Hadimani, K. S. Kumar, and S. P. Jagadish, Wear Study on SS316L , Ti-6Al-4V , PEEK , Polyurethane and Alumina used as Bio-Material, Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 9, p.5–9, (2012).
Google Scholar
[11]
J.R. Davis, Overview of Biomaterials and Their Use in Medical Devices. ASM international the material information society, 2003, p.13–19.
Google Scholar
[12]
K. Nugroho, A. Yahya, N. L. Safura Hashim, M. R. Daud, N. H. Haji Khamis, K. Khalil, M. A. A. Rahim, and A. Baharom, Investigation of Workpiece Positioning Methods for Machining Oil-Pocket on Hip-Implant Spherical Surface, Key Eng. Mater., vol. 594–595, p.535–539, (2014).
DOI: 10.4028/www.scientific.net/kem.594-595.535
Google Scholar
[13]
U. K. Mudali, T. M. Sridhar, and B. Raj, Corrosion of bio implants, Sadhana, vol. 28, no. August, p.601–637, (2003).
DOI: 10.1007/bf02706450
Google Scholar
[14]
N. Soumya and R. Banerjee, Fundamentals of Medical Implant Materials, in ASM Handbook, Materials for Medical Devices (ASM International), vol. 23, R. Narayan, Ed. ASM International, 2012, p.6 – 17.
Google Scholar
[15]
S. B. Wang, S. R. Ge, H. T. Liu, and X. L. Huang, Wear Behaviour and Wear Debris Characterization of UHMWPE on Alumina Ceramic, Stainless Steel, CoCrMo and Ti6Al4V Hip Prostheses in a Hip Joint Simulator, J. Biomim. Biomater. Tissue Eng., vol. 7, p.7–25, (2010).
DOI: 10.4028/www.scientific.net/jbbte.7.7
Google Scholar
[16]
R. M. Pilliar, Biomedical Materials. New York, USA: Springer, 2009, p.41–81.
Google Scholar
[17]
R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and John Jansen, Review Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces, Coating, vol. 2, p.95–119, (2012).
DOI: 10.3390/coatings2030095
Google Scholar
[18]
J. Alvarado, R. Maldonado, J. Marxuach, and R. Otero, Biomechanics of hip and knee protheses, Appl. Eng. Mech. Med. GED, p.6–22, (2003).
Google Scholar
[19]
M. Semlitsch and H. . Willert, Properties of implant alloys for artificial hip joints, Med. Biol. Eng. Comput., vol. 18, p.511–520, (1980).
DOI: 10.1007/bf02443329
Google Scholar
[20]
A. H. U. Ozbek. I, B.A. Konduk, C. Bindal, Characterization of borided AISI 316L stainless steel implant, Surf. Eng. Surf. intrumentation Vac. Technol., vol. 65, p.521–525, (2002).
DOI: 10.1016/s0042-207x(01)00466-3
Google Scholar
[21]
M. Grądzka-Dahlke, J. R. Dąbrowski, and B. Dąbrowski, Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy, J. Mater. Process. Technol., vol. 204, no. 1–3, p.199–205, (2008).
DOI: 10.1016/j.jmatprotec.2007.11.034
Google Scholar
[22]
M. Sumita, T. Hanawa, and S. H. Teoh, Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review, Mater. Sci. Eng. C, vol. 24, no. 6–8, p.753–760, (2004).
DOI: 10.1016/j.msec.2004.08.030
Google Scholar
[23]
S. Nag, R. Banerjee, J. Stechschulte, and H. L. Fraser, Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys., J. Mater. Sci. Mater. Med., vol. 16, no. 7, p.679–85, (2005).
DOI: 10.1007/s10856-005-2540-6
Google Scholar
[24]
Z. Huda, Designing Fail-Safe Biomaterials against Wear for Artificial Total Hip Replacement, J. Biomim. Biomater. Tissue Eng., vol. 6, p.45–55, Sep. (2010).
DOI: 10.4028/www.scientific.net/jbbte.6.45
Google Scholar
[25]
X. W. Tan, A. P. P. Perera, A. Tan, D. Tan, and K. A. Khor, Comparison of Candidate Materials for a Synthetic Osteo-Odonto Keratoprosthesis Device, Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, p.21–29, (2011).
DOI: 10.1167/iovs.10-6186
Google Scholar
[26]
X. Li, C. Wang, W. Zhang, and Y. Li, Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications, Rapid Prototyp. J., vol. 1, p.44–49, (2010).
DOI: 10.1108/13552541011011703
Google Scholar
[27]
M. Niinomi, Fatigue characteristics of metallic biomaterials, Int. J. Fatigue, vol. 29, no. 6, p.992–1000, (2007).
DOI: 10.1016/j.ijfatigue.2006.09.021
Google Scholar
[28]
L. Trentani, F. Pelillo, F. C. Pavesi, L. Ceciliani, G. Cetta, and A. Forlino, Evaluation of the TiMo 12 Zr 6 Fe 2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts, Biomaterials, vol. 23, p.2863–2869, (2002).
DOI: 10.1016/s0142-9612(01)00413-6
Google Scholar
[29]
A. Ungersböck, S. Perren, and O. Pohler, Comparison of the tissue reaction to implants made of a beta titanium alloy and pure titanium. Experimental study on rabbits, J. Mater. Sci. Med., vol. 5, p.788–792, (1994).
DOI: 10.1007/bf00213136
Google Scholar
[30]
O. Yoshimitsu, I. Yoshimasa, I. Atsuo, and T. Tetsuya, Effect of alloying element on mechanical properties. pdf, Mater. Trans. JIM, vol. 34(12), p.1217–1222, (1993).
Google Scholar
[31]
P. Majumdar, S. B. Singh, and M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study, Mater. Sci. Eng. A, vol. 489, no. 1–2, p.419–425, (2008).
DOI: 10.1016/j.msea.2007.12.029
Google Scholar
[32]
S. Nag, R. Banerjee, and H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys, Mater. Sci. Eng. C, vol. 25, no. 3, p.357–362, (2005).
DOI: 10.1016/j.msec.2004.12.013
Google Scholar
[33]
B. M. Holzapfel, J. C. Reichert, J. -T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, and D. W. Hutmacher, How smart do biomaterials need to be? A translational science and clinical point of view., Adv. Drug Deliv. Rev., vol. 65, no. 4, p.581–603, (2013).
DOI: 10.1016/j.addr.2012.07.009
Google Scholar
[34]
M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, Biomaterials in orthopaedics., J. R. Soc. Interface, vol. 5, no. 27, p.1137–58, (2008).
DOI: 10.1098/rsif.2008.0151
Google Scholar
[35]
S. Bauer, P. Schmuki, K. von der Mark, and J. Park, Engineering biocompatible implant surfaces, Prog. Mater. Sci., vol. 58, no. 3, p.261–326, (2013).
DOI: 10.1016/j.pmatsci.2012.09.001
Google Scholar
[36]
D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses., Biomaterials, vol. 24, no. 8, p.1519–24, Apr. (2003).
DOI: 10.1016/s0142-9612(02)00533-1
Google Scholar
[37]
M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A, vol. 243, no. 1–2, p.231–236, (1998).
Google Scholar
[38]
O. Yoshiki, Bioscience and Bioengineering of Titanium Materials. Elsevier, Oxford, 2007, p.11–22.
Google Scholar
[39]
J. Sieniawski and M. Motyka, Superplasticity in titanium alloys, J. Achiev. Mater. Manuf. Eng., vol. 24, no. 1, p.123–130, (2007).
Google Scholar
[40]
R. Chiesa, G. Cotogno, M. Franchi, and S. Rivetti, Tribological Characterization of Surface Treated Titanium for Orthopaedic Joints, Mater. Sci. forum, vol. 543, p.606–611, (2007).
DOI: 10.4028/www.scientific.net/msf.539-543.606
Google Scholar
[41]
V. Geantă, I. Voiculescu, R. Stefănoiu, and I. Chiriţă, Obtaining and Characterization of Biocompatible Co-Cr as Cast Alloys, Key Eng. Mater., vol. 583, p.16–21, (2014).
DOI: 10.4028/www.scientific.net/kem.583.16
Google Scholar
[42]
Y. K. K. Joon B. Park, Metallic Biomaterials, in Biomaterial Principles and Applications, J. B. Park and J. D. Bronzino, Eds. Boca raton New York Washington, D.C.: CRC Press, 2002, p.1–20.
Google Scholar
[43]
I. Milošev, CoCrMo Alloy for Biomedical Applications, in Biomedical Applications, S. S. Djokić, Ed. New York: Springer NewYork Heidelberg Dordrecht London, 2012, p.1–72.
Google Scholar
[44]
H. F. Lopez, Alloy Developments in Biomedical Co-Base Alloys for HIP Implant Applications, Mater. Sci. forum, vol. 736, p.133–146, (2013).
DOI: 10.4028/www.scientific.net/msf.736.133
Google Scholar
[45]
T. R. Lawson, S. A. Catledge, and Y. K. Vohra, Nanostructured Diamond Coated CoCrMo Alloys for Use in Biomedical Implants, Key Eng. Mater., vol. 284–286, p.1015–1018, (2005).
DOI: 10.4028/www.scientific.net/kem.284-286.1015
Google Scholar
[46]
R. Pourzal, R. Theissmann, B. Gleising, S. Williams, and A. Fischer, Micro-Structural Alterations in MoM Hip Implants, Mater. Sci. Forum, vol. 638–642, p.1872–1877, Jan. (2010).
DOI: 10.4028/www.scientific.net/msf.638-642.1872
Google Scholar
[47]
A. Szarek, G. Stradomski, and J. Wlodarski, The Analysis of Hip Joint Prosthesis Head Microstructure Changes during Variable Stress State as a Result of Human Motor Activity, Mater. Sci. Forum, vol. 706–709, p.600–605, (2012).
DOI: 10.4028/www.scientific.net/msf.706-709.600
Google Scholar
[48]
E. Bettini, T. Eriksson, M. Boström, C. Leygraf, and J. Pan, Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies, Electrochim. Acta, vol. 56, no. 25, p.9413–9419, (2011).
DOI: 10.1016/j.electacta.2011.08.028
Google Scholar
[49]
S. H. Lee, H. Chiba, B. Syuto, N. Nomura, and A. Chiba, Effect of Iron Addition on Co-29Cr-6Mo Alloys for Biomedical Applications, Mater. Sci. Forum, vol. 561–565, p.1497–1500, (2007).
DOI: 10.4028/www.scientific.net/msf.561-565.1497
Google Scholar