Metallic Biomaterials for Medical Implant Applications: A Review

Article Preview

Abstract:

Stainless steel, titanium alloys and cobalt chromium molybdenum alloys are classified under the metallic biomaterials whereby various surgical implants, prosthesis and medical devices are manufactured to replace missing body parts which may be lost through accident, trauma, disease, or congenital conditions. Among these materials, cobalt chromium molybdenum alloys are the common cobalt base alloy used for orthopedic implants due their excellence properties which include high corrosion resistance, high strength, high hardness, high creep resistance, biocompatibility and greater wear resistance. This paper summarises the various aspects and characteristic of metallic biomaterials such as stainless steel, titanium and cobalt chromium alloys for medical applications especially for orthopedic implant. These include material properties, biocompatibility, advantages and limitations for medical implants applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-25

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A, vol. 33A, p.477–486, (2002).

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[2] P. Y. Javad Malekani, Beat Schmutz, Yuantong Gu, Michael Schuetz, Biomaterials in orthopedic bone plates: a riview, in Proceedings of the 2nd Annual International Conference on Materials Science, Metal & Manufacturing (M3 2011), Global Science and Technology Forum, Bali, Indonesia, 2011, p.71.

Google Scholar

[3] D. BomBac, M. Brojan, P. Fajfar, F. Kosel, and R. Turk, Review of materials in medical applications, RMZ–Materials and Geoenvironment, vol. 54, no. 4, p.471–499, (2007).

Google Scholar

[4] N. Patel and P. Gohil, A review on biomaterials: scope, applications & human anatomy significance, Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 4, p.91–101, (2012).

Google Scholar

[5] K. V. Sudhakar and J. Wang, Fatigue Behavior of Vitallium-2000 Plus Alloy for Orthopedic Applications, J. Mater. Eng. Perform., vol. 20, no. 6, p.1023–1027, (2011).

DOI: 10.1007/s11665-010-9716-z

Google Scholar

[6] M. Geetha, D. Durgalakshmi, and R. Asokamani, Biomedical Implants: Corrosion and its Prevention - A Review, Recent Patents Corros. Sci., vol. 2, p.40–54, (2010).

DOI: 10.2174/1877610801002010040

Google Scholar

[7] R. M. Pill, Metallic biomaterials, in Biomedical materials, N. Roger, Ed. Springer, 2009, p.41–81.

Google Scholar

[8] H. Hendra, R. Dadan, and D. J. R. P, Metals for Biomedical Applications, in Biomedical Engineering - From Theory to Applications, P. R. Fazel, Ed. InTech, 2011, p.411–431.

Google Scholar

[9] C. Balagna, S. Spriano, and M. G. Faga, Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance, Mater. Sci. Eng. C, vol. 32, no. 7, p.1868–1877, (2012).

DOI: 10.1016/j.msec.2012.05.003

Google Scholar

[10] H. G. Hanumantharaju, H. K. Shivananda, M. G. Hadimani, K. S. Kumar, and S. P. Jagadish, Wear Study on SS316L , Ti-6Al-4V , PEEK , Polyurethane and Alumina used as Bio-Material, Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 9, p.5–9, (2012).

Google Scholar

[11] J.R. Davis, Overview of Biomaterials and Their Use in Medical Devices. ASM international the material information society, 2003, p.13–19.

Google Scholar

[12] K. Nugroho, A. Yahya, N. L. Safura Hashim, M. R. Daud, N. H. Haji Khamis, K. Khalil, M. A. A. Rahim, and A. Baharom, Investigation of Workpiece Positioning Methods for Machining Oil-Pocket on Hip-Implant Spherical Surface, Key Eng. Mater., vol. 594–595, p.535–539, (2014).

DOI: 10.4028/www.scientific.net/kem.594-595.535

Google Scholar

[13] U. K. Mudali, T. M. Sridhar, and B. Raj, Corrosion of bio implants, Sadhana, vol. 28, no. August, p.601–637, (2003).

DOI: 10.1007/bf02706450

Google Scholar

[14] N. Soumya and R. Banerjee, Fundamentals of Medical Implant Materials, in ASM Handbook, Materials for Medical Devices (ASM International), vol. 23, R. Narayan, Ed. ASM International, 2012, p.6 – 17.

Google Scholar

[15] S. B. Wang, S. R. Ge, H. T. Liu, and X. L. Huang, Wear Behaviour and Wear Debris Characterization of UHMWPE on Alumina Ceramic, Stainless Steel, CoCrMo and Ti6Al4V Hip Prostheses in a Hip Joint Simulator, J. Biomim. Biomater. Tissue Eng., vol. 7, p.7–25, (2010).

DOI: 10.4028/www.scientific.net/jbbte.7.7

Google Scholar

[16] R. M. Pilliar, Biomedical Materials. New York, USA: Springer, 2009, p.41–81.

Google Scholar

[17] R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and John Jansen, Review Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces, Coating, vol. 2, p.95–119, (2012).

DOI: 10.3390/coatings2030095

Google Scholar

[18] J. Alvarado, R. Maldonado, J. Marxuach, and R. Otero, Biomechanics of hip and knee protheses, Appl. Eng. Mech. Med. GED, p.6–22, (2003).

Google Scholar

[19] M. Semlitsch and H. . Willert, Properties of implant alloys for artificial hip joints, Med. Biol. Eng. Comput., vol. 18, p.511–520, (1980).

DOI: 10.1007/bf02443329

Google Scholar

[20] A. H. U. Ozbek. I, B.A. Konduk, C. Bindal, Characterization of borided AISI 316L stainless steel implant, Surf. Eng. Surf. intrumentation Vac. Technol., vol. 65, p.521–525, (2002).

DOI: 10.1016/s0042-207x(01)00466-3

Google Scholar

[21] M. Grądzka-Dahlke, J. R. Dąbrowski, and B. Dąbrowski, Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy, J. Mater. Process. Technol., vol. 204, no. 1–3, p.199–205, (2008).

DOI: 10.1016/j.jmatprotec.2007.11.034

Google Scholar

[22] M. Sumita, T. Hanawa, and S. H. Teoh, Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials—review, Mater. Sci. Eng. C, vol. 24, no. 6–8, p.753–760, (2004).

DOI: 10.1016/j.msec.2004.08.030

Google Scholar

[23] S. Nag, R. Banerjee, J. Stechschulte, and H. L. Fraser, Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys., J. Mater. Sci. Mater. Med., vol. 16, no. 7, p.679–85, (2005).

DOI: 10.1007/s10856-005-2540-6

Google Scholar

[24] Z. Huda, Designing Fail-Safe Biomaterials against Wear for Artificial Total Hip Replacement, J. Biomim. Biomater. Tissue Eng., vol. 6, p.45–55, Sep. (2010).

DOI: 10.4028/www.scientific.net/jbbte.6.45

Google Scholar

[25] X. W. Tan, A. P. P. Perera, A. Tan, D. Tan, and K. A. Khor, Comparison of Candidate Materials for a Synthetic Osteo-Odonto Keratoprosthesis Device, Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, p.21–29, (2011).

DOI: 10.1167/iovs.10-6186

Google Scholar

[26] X. Li, C. Wang, W. Zhang, and Y. Li, Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications, Rapid Prototyp. J., vol. 1, p.44–49, (2010).

DOI: 10.1108/13552541011011703

Google Scholar

[27] M. Niinomi, Fatigue characteristics of metallic biomaterials, Int. J. Fatigue, vol. 29, no. 6, p.992–1000, (2007).

DOI: 10.1016/j.ijfatigue.2006.09.021

Google Scholar

[28] L. Trentani, F. Pelillo, F. C. Pavesi, L. Ceciliani, G. Cetta, and A. Forlino, Evaluation of the TiMo 12 Zr 6 Fe 2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts, Biomaterials, vol. 23, p.2863–2869, (2002).

DOI: 10.1016/s0142-9612(01)00413-6

Google Scholar

[29] A. Ungersböck, S. Perren, and O. Pohler, Comparison of the tissue reaction to implants made of a beta titanium alloy and pure titanium. Experimental study on rabbits, J. Mater. Sci. Med., vol. 5, p.788–792, (1994).

DOI: 10.1007/bf00213136

Google Scholar

[30] O. Yoshimitsu, I. Yoshimasa, I. Atsuo, and T. Tetsuya, Effect of alloying element on mechanical properties. pdf, Mater. Trans. JIM, vol. 34(12), p.1217–1222, (1993).

Google Scholar

[31] P. Majumdar, S. B. Singh, and M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study, Mater. Sci. Eng. A, vol. 489, no. 1–2, p.419–425, (2008).

DOI: 10.1016/j.msea.2007.12.029

Google Scholar

[32] S. Nag, R. Banerjee, and H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys, Mater. Sci. Eng. C, vol. 25, no. 3, p.357–362, (2005).

DOI: 10.1016/j.msec.2004.12.013

Google Scholar

[33] B. M. Holzapfel, J. C. Reichert, J. -T. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, and D. W. Hutmacher, How smart do biomaterials need to be? A translational science and clinical point of view., Adv. Drug Deliv. Rev., vol. 65, no. 4, p.581–603, (2013).

DOI: 10.1016/j.addr.2012.07.009

Google Scholar

[34] M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, Biomaterials in orthopaedics., J. R. Soc. Interface, vol. 5, no. 27, p.1137–58, (2008).

DOI: 10.1098/rsif.2008.0151

Google Scholar

[35] S. Bauer, P. Schmuki, K. von der Mark, and J. Park, Engineering biocompatible implant surfaces, Prog. Mater. Sci., vol. 58, no. 3, p.261–326, (2013).

DOI: 10.1016/j.pmatsci.2012.09.001

Google Scholar

[36] D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses., Biomaterials, vol. 24, no. 8, p.1519–24, Apr. (2003).

DOI: 10.1016/s0142-9612(02)00533-1

Google Scholar

[37] M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A, vol. 243, no. 1–2, p.231–236, (1998).

Google Scholar

[38] O. Yoshiki, Bioscience and Bioengineering of Titanium Materials. Elsevier, Oxford, 2007, p.11–22.

Google Scholar

[39] J. Sieniawski and M. Motyka, Superplasticity in titanium alloys, J. Achiev. Mater. Manuf. Eng., vol. 24, no. 1, p.123–130, (2007).

Google Scholar

[40] R. Chiesa, G. Cotogno, M. Franchi, and S. Rivetti, Tribological Characterization of Surface Treated Titanium for Orthopaedic Joints, Mater. Sci. forum, vol. 543, p.606–611, (2007).

DOI: 10.4028/www.scientific.net/msf.539-543.606

Google Scholar

[41] V. Geantă, I. Voiculescu, R. Stefănoiu, and I. Chiriţă, Obtaining and Characterization of Biocompatible Co-Cr as Cast Alloys, Key Eng. Mater., vol. 583, p.16–21, (2014).

DOI: 10.4028/www.scientific.net/kem.583.16

Google Scholar

[42] Y. K. K. Joon B. Park, Metallic Biomaterials, in Biomaterial Principles and Applications, J. B. Park and J. D. Bronzino, Eds. Boca raton New York Washington, D.C.: CRC Press, 2002, p.1–20.

Google Scholar

[43] I. Milošev, CoCrMo Alloy for Biomedical Applications, in Biomedical Applications, S. S. Djokić, Ed. New York: Springer NewYork Heidelberg Dordrecht London, 2012, p.1–72.

Google Scholar

[44] H. F. Lopez, Alloy Developments in Biomedical Co-Base Alloys for HIP Implant Applications, Mater. Sci. forum, vol. 736, p.133–146, (2013).

DOI: 10.4028/www.scientific.net/msf.736.133

Google Scholar

[45] T. R. Lawson, S. A. Catledge, and Y. K. Vohra, Nanostructured Diamond Coated CoCrMo Alloys for Use in Biomedical Implants, Key Eng. Mater., vol. 284–286, p.1015–1018, (2005).

DOI: 10.4028/www.scientific.net/kem.284-286.1015

Google Scholar

[46] R. Pourzal, R. Theissmann, B. Gleising, S. Williams, and A. Fischer, Micro-Structural Alterations in MoM Hip Implants, Mater. Sci. Forum, vol. 638–642, p.1872–1877, Jan. (2010).

DOI: 10.4028/www.scientific.net/msf.638-642.1872

Google Scholar

[47] A. Szarek, G. Stradomski, and J. Wlodarski, The Analysis of Hip Joint Prosthesis Head Microstructure Changes during Variable Stress State as a Result of Human Motor Activity, Mater. Sci. Forum, vol. 706–709, p.600–605, (2012).

DOI: 10.4028/www.scientific.net/msf.706-709.600

Google Scholar

[48] E. Bettini, T. Eriksson, M. Boström, C. Leygraf, and J. Pan, Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies, Electrochim. Acta, vol. 56, no. 25, p.9413–9419, (2011).

DOI: 10.1016/j.electacta.2011.08.028

Google Scholar

[49] S. H. Lee, H. Chiba, B. Syuto, N. Nomura, and A. Chiba, Effect of Iron Addition on Co-29Cr-6Mo Alloys for Biomedical Applications, Mater. Sci. Forum, vol. 561–565, p.1497–1500, (2007).

DOI: 10.4028/www.scientific.net/msf.561-565.1497

Google Scholar