[1]
P. Pei, et al, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A, vol. 84, 042339(2011).
Google Scholar
[2]
L. Aolita, et al, Gapped two-body hamiltonian for continuous-variable quantum computation, Phys. Rev. Lett., vol. 106, 090501(2011).
DOI: 10.1103/physrevlett.106.090501
Google Scholar
[3]
L. Chirolli, and G. Burkard, superconducting resonators as beam splitters for linear-optics quantum computation, Phys. Rev. Lett., vol. 104, 230502(2010).
DOI: 10.1103/physrevlett.104.230502
Google Scholar
[4]
R. Ukai, Demonstration of unconditional one-way quantum computations for continuous variables, Phys. Rev. Lett, vol. 106, 240504(2011).
DOI: 10.1103/physrevlett.106.240504
Google Scholar
[5]
B. Chen, et al, All-optical transistor based on a cavity optomechanical system with a bose-einstein condensate, Phys. Rev. A, vol. 84, 055802(2011).
DOI: 10.1103/physreva.84.055802
Google Scholar
[6]
X. Ma and S. John, Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing, Phys. Rev. A, vol. 80, 063810(2009).
DOI: 10.1103/physreva.80.063810
Google Scholar
[7]
D. Vujic and S. John, Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides, Phys. Rev. A, vol. 76, 063814(2007).
DOI: 10.1103/physreva.76.063814
Google Scholar
[8]
B. Wang, et al, Controlled release of stored optical pulses in an atomic ensemble into two separate photonic channels, Phys. Rev. A, vol. 72, 043801(2005).
DOI: 10.1103/physreva.72.043801
Google Scholar
[9]
L. Jing, et al, Single-photon router, Coherent control of multichannel scattering for single photons with quantum interferences, Phys. Rev. A, vol. 89, 013805(2014).
DOI: 10.1103/physreva.89.013805
Google Scholar
[10]
J.T. Shen and S.H. Fan, Quantum critical coupling conditions for zero single-photon transmission through a coupled atom-resonator-waveguide system, Phys. Rev. A, vol. 82, 021802(R)(2010).
DOI: 10.1103/physreva.82.021802
Google Scholar
[11]
J.T. Shen and S.H. Fan, Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom, Phys. Rev. A, vol. 79, 023837(2009).
DOI: 10.1103/physreva.79.059904
Google Scholar
[12]
J.T. Shen and S.H. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. A, vol. 79, 023838(2009).
DOI: 10.1103/physrevlett.95.213001
Google Scholar
[13]
H. Yuan and L. F. Wei, Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity, Phys. Rev. A, vol. 88, 042104(2013).
DOI: 10.1103/physreva.88.042104
Google Scholar
[14]
C.H. Yan, W.Z. Jia, and L.F. Wei, Controlling single-photon transport with three-level quantum dots in photonic crystals, Phys. Rev. A, vol. 89, 033819(2014).
DOI: 10.1103/physreva.89.033819
Google Scholar
[15]
L. Zhou, et al, Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett., vol. 101, 100501(2008).
DOI: 10.1103/physrevlett.101.100501
Google Scholar
[16]
J.T. Shen and S.H. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett., vol. 95, 213001(2005).
DOI: 10.1103/physrevlett.95.213001
Google Scholar
[17]
K.Y. Xia, et al, Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling , Phys. Rev. A, vol. 90, 043802(2014).
DOI: 10.1103/physreva.90.043802
Google Scholar
[18]
L. Zhou, et al, Quantum Zeno switch for single-photon coherent transport, Phys. Rev. A, vol. 80, 062109(2009).
Google Scholar
[19]
Z.R. Gong, et al, Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism, Phys. Rev. A, vol. 78, 053806, (2008).
DOI: 10.1103/physreva.78.053806
Google Scholar
[20]
J. Lu, et al, Quantum decoherence in a hybrid atom-optical system of a one-dimensional coupled-resonator waveguide and an atom, Phys. Rev. A , vol. 81, 062111(2010).
DOI: 10.1103/physreva.81.062111
Google Scholar
[21]
J.Q. Liao, et al, Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities, Phys. Rev. A, vol. 81, 042304(2010).
DOI: 10.1103/physreva.81.042304
Google Scholar
[22]
C.H. Yan, et al, Controlling resonant photonic transport along optical waveguides by two-level atoms, Phys. Rev. A, vol. 84, 045801(2011).
DOI: 10.1103/physreva.84.045801
Google Scholar
[23]
A.D. Greentree, et al, Quantum phase transitions of light, Nat. Phys., vol. 2, pp.856-861(2006).
Google Scholar
[24]
H. Altug and J. Vuckovic, Two-dimensional coupled photonic crystal resonator arrays, Appl. Phys. Lett., vol. 84, p.161(2004).
DOI: 10.1063/1.1639505
Google Scholar
[25]
L. Zhou, et al, Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits, Phys. Rev. A, vol. 77, 013831(2008).
DOI: 10.1103/physreva.77.013831
Google Scholar
[26]
K.Y. Bliokh, et al, Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., vol. 80, p.1201(2008).
DOI: 10.1103/revmodphys.80.1201
Google Scholar
[27]
P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt. Phys., vol. 37, 95(1996).
Google Scholar
[28]
J. Reichel, W. Hansel, and T.W. Hänsch, Atomic micromanipulation with magnetic surface traps, Phys. Rev. Lett., vol. 83, 3398(1999).
DOI: 10.1103/physrevlett.83.3398
Google Scholar
[29]
H. Wang, S.Q. Liu, and J.Z. He, Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine, Phys. Rev. E., vol. 79, 041113(2009).
DOI: 10.1103/physreve.79.041113
Google Scholar
[30]
S. Nicolosi, et al, Dissipation-induced stationary entanglement in dipole-dipole interacting atomic samples, Phys. Rev. A, vol. 70, 022511(2004).
DOI: 10.1103/physreva.70.022511
Google Scholar