A Study about Single-Photon Transport Controlled by Dipole-Dipole Interaction in a One-Dimensional Coupled Waveguide Cavity

Article Preview

Abstract:

In this paper, by regulating the dipole-dipole interaction between atoms, we can successfully control the behavior of single-photon transport in one-dimensional waveguide cavity. Our findings indicate that the dipole-dipole interaction is equivalent to the positive detuning. Furthermore, we also found that there is a competition between dipole-dipole interaction and the atom-cavity coupling. In addition, we also studied the influences of dipole-dipole interaction on transport spectrum under extreme conditions of high and low energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Pei, et al, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A, vol. 84, 042339(2011).

Google Scholar

[2] L. Aolita, et al, Gapped two-body hamiltonian for continuous-variable quantum computation, Phys. Rev. Lett., vol. 106, 090501(2011).

DOI: 10.1103/physrevlett.106.090501

Google Scholar

[3] L. Chirolli, and G. Burkard, superconducting resonators as beam splitters for linear-optics quantum computation, Phys. Rev. Lett., vol. 104, 230502(2010).

DOI: 10.1103/physrevlett.104.230502

Google Scholar

[4] R. Ukai, Demonstration of unconditional one-way quantum computations for continuous variables, Phys. Rev. Lett, vol. 106, 240504(2011).

DOI: 10.1103/physrevlett.106.240504

Google Scholar

[5] B. Chen, et al, All-optical transistor based on a cavity optomechanical system with a bose-einstein condensate, Phys. Rev. A, vol. 84, 055802(2011).

DOI: 10.1103/physreva.84.055802

Google Scholar

[6] X. Ma and S. John, Switching dynamics and ultrafast inversion control of quantum dots for on-chip optical information processing, Phys. Rev. A, vol. 80, 063810(2009).

DOI: 10.1103/physreva.80.063810

Google Scholar

[7] D. Vujic and S. John, Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides, Phys. Rev. A, vol. 76, 063814(2007).

DOI: 10.1103/physreva.76.063814

Google Scholar

[8] B. Wang, et al, Controlled release of stored optical pulses in an atomic ensemble into two separate photonic channels, Phys. Rev. A, vol. 72, 043801(2005).

DOI: 10.1103/physreva.72.043801

Google Scholar

[9] L. Jing, et al, Single-photon router, Coherent control of multichannel scattering for single photons with quantum interferences, Phys. Rev. A, vol. 89, 013805(2014).

DOI: 10.1103/physreva.89.013805

Google Scholar

[10] J.T. Shen and S.H. Fan, Quantum critical coupling conditions for zero single-photon transmission through a coupled atom-resonator-waveguide system, Phys. Rev. A, vol. 82, 021802(R)(2010).

DOI: 10.1103/physreva.82.021802

Google Scholar

[11] J.T. Shen and S.H. Fan, Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom, Phys. Rev. A, vol. 79, 023837(2009).

DOI: 10.1103/physreva.79.059904

Google Scholar

[12] J.T. Shen and S.H. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. A, vol. 79, 023838(2009).

DOI: 10.1103/physrevlett.95.213001

Google Scholar

[13] H. Yuan and L. F. Wei, Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity, Phys. Rev. A, vol. 88, 042104(2013).

DOI: 10.1103/physreva.88.042104

Google Scholar

[14] C.H. Yan, W.Z. Jia, and L.F. Wei, Controlling single-photon transport with three-level quantum dots in photonic crystals, Phys. Rev. A, vol. 89, 033819(2014).

DOI: 10.1103/physreva.89.033819

Google Scholar

[15] L. Zhou, et al, Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett., vol. 101, 100501(2008).

DOI: 10.1103/physrevlett.101.100501

Google Scholar

[16] J.T. Shen and S.H. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett., vol. 95, 213001(2005).

DOI: 10.1103/physrevlett.95.213001

Google Scholar

[17] K.Y. Xia, et al, Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling , Phys. Rev. A, vol. 90, 043802(2014).

DOI: 10.1103/physreva.90.043802

Google Scholar

[18] L. Zhou, et al, Quantum Zeno switch for single-photon coherent transport, Phys. Rev. A, vol. 80, 062109(2009).

Google Scholar

[19] Z.R. Gong, et al, Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism, Phys. Rev. A, vol. 78, 053806, (2008).

DOI: 10.1103/physreva.78.053806

Google Scholar

[20] J. Lu, et al, Quantum decoherence in a hybrid atom-optical system of a one-dimensional coupled-resonator waveguide and an atom, Phys. Rev. A , vol. 81, 062111(2010).

DOI: 10.1103/physreva.81.062111

Google Scholar

[21] J.Q. Liao, et al, Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities, Phys. Rev. A, vol. 81, 042304(2010).

DOI: 10.1103/physreva.81.042304

Google Scholar

[22] C.H. Yan, et al, Controlling resonant photonic transport along optical waveguides by two-level atoms, Phys. Rev. A, vol. 84, 045801(2011).

DOI: 10.1103/physreva.84.045801

Google Scholar

[23] A.D. Greentree, et al, Quantum phase transitions of light, Nat. Phys., vol. 2, pp.856-861(2006).

Google Scholar

[24] H. Altug and J. Vuckovic, Two-dimensional coupled photonic crystal resonator arrays, Appl. Phys. Lett., vol. 84, p.161(2004).

DOI: 10.1063/1.1639505

Google Scholar

[25] L. Zhou, et al, Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits, Phys. Rev. A, vol. 77, 013831(2008).

DOI: 10.1103/physreva.77.013831

Google Scholar

[26] K.Y. Bliokh, et al, Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., vol. 80, p.1201(2008).

DOI: 10.1103/revmodphys.80.1201

Google Scholar

[27] P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt. Phys., vol. 37, 95(1996).

Google Scholar

[28] J. Reichel, W. Hansel, and T.W. Hänsch, Atomic micromanipulation with magnetic surface traps, Phys. Rev. Lett., vol. 83, 3398(1999).

DOI: 10.1103/physrevlett.83.3398

Google Scholar

[29] H. Wang, S.Q. Liu, and J.Z. He, Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine, Phys. Rev. E., vol. 79, 041113(2009).

DOI: 10.1103/physreve.79.041113

Google Scholar

[30] S. Nicolosi, et al, Dissipation-induced stationary entanglement in dipole-dipole interacting atomic samples, Phys. Rev. A, vol. 70, 022511(2004).

DOI: 10.1103/physreva.70.022511

Google Scholar