[1]
A. Wallraff, D.I. Schuster, and A. Blais, et al, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, vol. 431, pp.162-167 (2004).
DOI: 10.1038/nature02851
Google Scholar
[2]
K.M. Birnbaum, A. Boca, and R. Miller, et al, Photon blockade in an optical cavity with one trapped atom, Nature, vol. 436, pp.87-90 (2005).
DOI: 10.1038/nature03804
Google Scholar
[3]
Kartik Srinivasan and Oskar Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system, Nature, vol. 450, pp.862-865 (2007).
DOI: 10.1038/nature06274
Google Scholar
[4]
Barak Dayan, A. S. Parkins, and Takao Aoki, et al, A Photon turnstile dynamically regulated by one atom, Science, vol. 319, pp.1062-1065 (2008).
DOI: 10.1126/science.1152261
Google Scholar
[5]
Edo Waks and Jelena Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems, Phys. Rev. Lett., vol. 96, 153601 (2006).
DOI: 10.1103/physrevlett.102.199901
Google Scholar
[6]
G. Manzacca, G. Cincotti, and K. Hingerl, Ultrafast switching by controlling rabi splitting, Appl. Phys. Lett., vol. 91, 231920 (2007).
DOI: 10.1063/1.2822820
Google Scholar
[7]
H. Yuan and L. F. Wei, Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity, Phys. Rev. A, vol. 88, 042104 (2013).
DOI: 10.1103/physreva.88.042104
Google Scholar
[8]
C.H. Yan, W.Z. Jia, and L.F. Wei, Controlling single-photon transport with three-level quantum dots in photonic crystals, Phys. Rev. A, vol. 89, 033819 (2014).
DOI: 10.1103/physreva.89.033819
Google Scholar
[9]
T.S. Tsoi and C.K. Law, Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide, Phys. Rev. A, vol. 80, 033823 (2009).
Google Scholar
[10]
D.S. Milne-Brownlie, M. Foster, and J.F. Gao, et al, Young-Type Interference in (e, 2e) Ionization of H2 , Phys. Rev. Lett., vol. 96, 233201 (2006).
Google Scholar
[11]
W.Z. Jia, L.F. Wei, and Z.D. Wang, Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms, Phys. Rev. A, vol. 83, 023811 (2011).
DOI: 10.1103/physreva.83.023811
Google Scholar
[12]
J.T. Shen and S. Fan, Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom, Phys. Rev. A, vol. 79, 023838 (2009).
DOI: 10.1103/physreva.79.039904
Google Scholar
[13]
S. Hughes, Coupled-Cavity QED Using Planar Photonic Crystals, Phys. Rev. Lett., vol. 98, 083603 (2007).
DOI: 10.1103/physrevlett.98.083603
Google Scholar
[14]
J.H. An, M. Feng, and C.H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities, Phys. Rev. A, vol. 79, 032303 (2009).
Google Scholar
[15]
Q.J. Tong, J.H. An, and H.G. Luo, et al, Mechanism of entanglement preservation, Phys. Rev. A, vol. 81, 052330 (2010).
Google Scholar
[16]
L. Zhou, L. Lu, and C.P. Sun, Decoherence suppression of a dissipative qubit by the non-Markovian effect, Phys. Rev. A, vol. 76, 012313 (2007).
Google Scholar
[17]
Z.R. Gong, H. Lan, and L. Zhou, et al, Coherent control of photon transmission: Slowing light in a coupled resonator waveguide doped with Λ atoms, Phys. Rev. A, vol. 76, 012313 (2007).
DOI: 10.1103/physreva.76.019905
Google Scholar
[18]
J.T. Shen and S. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett., vol. 95, 213001 (2005).
DOI: 10.1103/physrevlett.95.213001
Google Scholar
[19]
L. Zhou, Z.R. Gong, and Y. Li, et al, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett., vol. 101, 100501 (2008).
Google Scholar
[20]
C.H. Yan, L.F. Wei, and W.Z. Jia, et al, Controlling resonant photonic transport along optical waveguides by two-level atoms, Phys. Rev. A, vol. 84, 0458013 (2011).
DOI: 10.1103/physreva.84.045801
Google Scholar