A Survey of Real-Time Industrial Wireless LAN Research

Article Preview

Abstract:

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1105-1110

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Willig, K. Matheus, and A. Wolisz, Wireless technology in indus-trial networks, Proc. IEEE, vol. 93, no. 6, p.1130–1151, Jun. (2005).

DOI: 10.1109/jproc.2005.849717

Google Scholar

[2] IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems–Specific Requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard, (2007).

DOI: 10.1109/ieeestd.2007.373646

Google Scholar

[3] IEEE Standard for Information Technology - Telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements - part 11: Wire- less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications', IEEE Std 802. 11-2007 (Revision of IEEE 802. 11-1999), (2007).

DOI: 10.1109/ieeestd.2014.6774846

Google Scholar

[4] Wu H, Peng Y, et al. Performance of reliable transport protocol over IEEE 802. 11 wireless LAN: analysis and enhancement [C]/INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2002, 2: 599-607.

DOI: 10.1109/infcom.2002.1019305

Google Scholar

[5] Yangbo Zheng, Aidong Xu, Yan Song, et al. INDUSTRIAL WIRELESS DETERMINISTIC COMMUNICATION BASED ON WLAN: DE-SIGN, IMPLEMENTATION AND ANALYSIS[J]. (2009).

Google Scholar

[6] Willig A, Matheus K, Wolisz A. Wireless technology in industrial networks[J]. Proceedings of the IEEE, 2005, 93(6): 1130-1151.

DOI: 10.1109/jproc.2005.849717

Google Scholar

[7] Costa R, Portugal P, Vasques F, et al. A TDMA-based mechanism for real-time communication in IEEE 802. 11e networks[C]/Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on. IEEE, 2010: 1-9.

DOI: 10.1109/etfa.2010.5641340

Google Scholar

[8] Trsek H, Jasperneite J. An isochronous medium access for real-time wireless communications in industrial automation systems-A use case for wireless clock synchronization[C]/Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 2011 Inter-national IEEE Symposium on. IEEE, 2011: 81-86.

DOI: 10.1109/ispcs.2011.6070162

Google Scholar

[9] Yang Yutuo, Liang Wei, et al. Time Synchronization Method of Wireless Network for Factory Automation[J]. Journal of Computer Research and Development, 2014, 51(3): 511-518.

Google Scholar

[10] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, WTRP-wireless token ring protocol, IEEE Transactions on Vehicular Technology, vol. 53, pp.1863-1881, (2004).

DOI: 10.1109/tvt.2004.836928

Google Scholar

[11] R. -G. Cheng, C. -Y. Wang, L. -H. Liao, Ripple: a wireless token-passing protocol for multi-hop wireless mesh networks, IEEE Communications Letters, vol. 10, pp.123-5, (2006).

DOI: 10.1109/lcomm.2006.02005

Google Scholar

[12] D. Miorandi and S. Vitturi, Analysis of master-slave protocols for realtime industrial com- munica-tions over IEEE802. 11 WLANs, in Proc. 2nd IEEE Int. Conf. Industrial Informatics, 2004, pp.143-148.

DOI: 10.1109/indin.2004.1417318

Google Scholar

[13] S. C. Lo, G. Lee, and W. T. Chen, An efficient multipolling mechanism for IEEE 802. 11 wireless LANs, IEEE Transactions on Computers, vol. 52, pp.764-68, (2003).

DOI: 10.1109/tc.2003.1204832

Google Scholar

[14] R. Moraes, F. Vasques, P. Portugal, and J.A. Fonseca, VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802. 11 Wireless Networks, IEEE Transactions on Industrial Informatics, vol. 3, pp.215-224, (2007).

DOI: 10.1109/tii.2007.903224

Google Scholar

[15] Cao Chun-sheng. Research of Real-time Industrial Wireless LAN MAC Protocol[D]. Shanghai Jiaotong University. (2006).

Google Scholar

[16] Hu Zhi-zhu. The real-time research in industrial wireless conrol net-work[D]. Zhejiang University. (2008).

Google Scholar

[17] Seno L, Vitturi S, Tramarin F. Tuning of IEEE 802. 11 MAC for improving real-time in industrial wireless networks[C]/Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th Con-ference on. IEEE, 2012: 1-8.

DOI: 10.1109/etfa.2012.6489553

Google Scholar

[18] Kamerman A, Monteban L. WaveLAN®-II: a high-performance wireless LAN for the unlicensed band[J]. Bell Labs technical journal, 1997, 2(3): 118-133.

DOI: 10.1002/bltj.2069

Google Scholar

[19] Min A W, Shin K G. An optimal transmission strategy for IEEE 802. 11 wireless LANs: stochastic control approach[C]/Sensor, Mesh and Ad-Hoc Communications and Networks, 2008. 5th Annual IEEE Communications Society Conference on IEEE, 2008: 251-259.

DOI: 10.1109/sahcn.2008.39

Google Scholar

[20] Lacage M, Manshaei M H, Turletti T. IEEE 802. 11 rate adaptation: a practical approach[C]/Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems. ACM, 2004: 126-134.

DOI: 10.1145/1023663.1023687

Google Scholar

[21] Vitturi S, Seno L, et al. On the rate adaptation techniques of IEEE 802. 11 networks for industrial applications[J]. Industrial Informatics, IEEE Transactions on, 2013, 9(1): 198-208.

DOI: 10.1109/tii.2012.2189223

Google Scholar

[22] Nugroho D A, Khaefi M R, Kim D S. Dynamic rate adaptation for industrial WLAN[C]/ICT Convergence (ICTC), 2013 International Conference on. IEEE, 2013: 575-580.

DOI: 10.1109/ictc.2013.6675423

Google Scholar

[23] Khan S, Mahmud S A, Noureddine H, et al. Rate-adaptation for multi-rate IEEE 802. 11 WLANs using mutual feedback between transmitter and receiver[C]/Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International Symposium on. IEEE, 2010: 1372-1377.

DOI: 10.1109/pimrc.2010.5672003

Google Scholar