[1]
A. Willig, K. Matheus, and A. Wolisz, Wireless technology in indus-trial networks, Proc. IEEE, vol. 93, no. 6, p.1130–1151, Jun. (2005).
DOI: 10.1109/jproc.2005.849717
Google Scholar
[2]
IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems–Specific Requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard, (2007).
DOI: 10.1109/ieeestd.2007.373646
Google Scholar
[3]
IEEE Standard for Information Technology - Telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements - part 11: Wire- less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications', IEEE Std 802. 11-2007 (Revision of IEEE 802. 11-1999), (2007).
DOI: 10.1109/ieeestd.2014.6774846
Google Scholar
[4]
Wu H, Peng Y, et al. Performance of reliable transport protocol over IEEE 802. 11 wireless LAN: analysis and enhancement [C]/INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2002, 2: 599-607.
DOI: 10.1109/infcom.2002.1019305
Google Scholar
[5]
Yangbo Zheng, Aidong Xu, Yan Song, et al. INDUSTRIAL WIRELESS DETERMINISTIC COMMUNICATION BASED ON WLAN: DE-SIGN, IMPLEMENTATION AND ANALYSIS[J]. (2009).
Google Scholar
[6]
Willig A, Matheus K, Wolisz A. Wireless technology in industrial networks[J]. Proceedings of the IEEE, 2005, 93(6): 1130-1151.
DOI: 10.1109/jproc.2005.849717
Google Scholar
[7]
Costa R, Portugal P, Vasques F, et al. A TDMA-based mechanism for real-time communication in IEEE 802. 11e networks[C]/Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on. IEEE, 2010: 1-9.
DOI: 10.1109/etfa.2010.5641340
Google Scholar
[8]
Trsek H, Jasperneite J. An isochronous medium access for real-time wireless communications in industrial automation systems-A use case for wireless clock synchronization[C]/Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 2011 Inter-national IEEE Symposium on. IEEE, 2011: 81-86.
DOI: 10.1109/ispcs.2011.6070162
Google Scholar
[9]
Yang Yutuo, Liang Wei, et al. Time Synchronization Method of Wireless Network for Factory Automation[J]. Journal of Computer Research and Development, 2014, 51(3): 511-518.
Google Scholar
[10]
M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, WTRP-wireless token ring protocol, IEEE Transactions on Vehicular Technology, vol. 53, pp.1863-1881, (2004).
DOI: 10.1109/tvt.2004.836928
Google Scholar
[11]
R. -G. Cheng, C. -Y. Wang, L. -H. Liao, Ripple: a wireless token-passing protocol for multi-hop wireless mesh networks, IEEE Communications Letters, vol. 10, pp.123-5, (2006).
DOI: 10.1109/lcomm.2006.02005
Google Scholar
[12]
D. Miorandi and S. Vitturi, Analysis of master-slave protocols for realtime industrial com- munica-tions over IEEE802. 11 WLANs, in Proc. 2nd IEEE Int. Conf. Industrial Informatics, 2004, pp.143-148.
DOI: 10.1109/indin.2004.1417318
Google Scholar
[13]
S. C. Lo, G. Lee, and W. T. Chen, An efficient multipolling mechanism for IEEE 802. 11 wireless LANs, IEEE Transactions on Computers, vol. 52, pp.764-68, (2003).
DOI: 10.1109/tc.2003.1204832
Google Scholar
[14]
R. Moraes, F. Vasques, P. Portugal, and J.A. Fonseca, VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802. 11 Wireless Networks, IEEE Transactions on Industrial Informatics, vol. 3, pp.215-224, (2007).
DOI: 10.1109/tii.2007.903224
Google Scholar
[15]
Cao Chun-sheng. Research of Real-time Industrial Wireless LAN MAC Protocol[D]. Shanghai Jiaotong University. (2006).
Google Scholar
[16]
Hu Zhi-zhu. The real-time research in industrial wireless conrol net-work[D]. Zhejiang University. (2008).
Google Scholar
[17]
Seno L, Vitturi S, Tramarin F. Tuning of IEEE 802. 11 MAC for improving real-time in industrial wireless networks[C]/Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th Con-ference on. IEEE, 2012: 1-8.
DOI: 10.1109/etfa.2012.6489553
Google Scholar
[18]
Kamerman A, Monteban L. WaveLAN®-II: a high-performance wireless LAN for the unlicensed band[J]. Bell Labs technical journal, 1997, 2(3): 118-133.
DOI: 10.1002/bltj.2069
Google Scholar
[19]
Min A W, Shin K G. An optimal transmission strategy for IEEE 802. 11 wireless LANs: stochastic control approach[C]/Sensor, Mesh and Ad-Hoc Communications and Networks, 2008. 5th Annual IEEE Communications Society Conference on IEEE, 2008: 251-259.
DOI: 10.1109/sahcn.2008.39
Google Scholar
[20]
Lacage M, Manshaei M H, Turletti T. IEEE 802. 11 rate adaptation: a practical approach[C]/Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems. ACM, 2004: 126-134.
DOI: 10.1145/1023663.1023687
Google Scholar
[21]
Vitturi S, Seno L, et al. On the rate adaptation techniques of IEEE 802. 11 networks for industrial applications[J]. Industrial Informatics, IEEE Transactions on, 2013, 9(1): 198-208.
DOI: 10.1109/tii.2012.2189223
Google Scholar
[22]
Nugroho D A, Khaefi M R, Kim D S. Dynamic rate adaptation for industrial WLAN[C]/ICT Convergence (ICTC), 2013 International Conference on. IEEE, 2013: 575-580.
DOI: 10.1109/ictc.2013.6675423
Google Scholar
[23]
Khan S, Mahmud S A, Noureddine H, et al. Rate-adaptation for multi-rate IEEE 802. 11 WLANs using mutual feedback between transmitter and receiver[C]/Personal Indoor and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International Symposium on. IEEE, 2010: 1372-1377.
DOI: 10.1109/pimrc.2010.5672003
Google Scholar