[1]
C. -Y. Lin, W. C. Peng, Y. C. Tseng. Efficient in-Network Moving Object Tracking in Wireless Sensor Networks[J]. IEEE Trans. On Mobile Computing, 2006, 5(8): 1044-1056.
DOI: 10.1109/tmc.2006.115
Google Scholar
[2]
J. L. Williams, J. W. Fisher, A. S. Willsky. Optimization Approaches to Dynamic Routing of Measurements and Models in A Sensor Network Object Tracking Problem[C]. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process (ICASSP), Mar. 2005, 5: 1061-1064.
DOI: 10.1109/icassp.2005.1416490
Google Scholar
[3]
B. H. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, K. Yao. Distributed Gauss-Newton Method for Node Localization in Wireless Sensor Networks[C]. Proc. IEEE 6th Workshop on Signal Process, Advanced Wireless Communication, Jun. 2005: 915-919.
DOI: 10.1109/spawc.2005.1506273
Google Scholar
[4]
R. D. Nowak. Distributed EM Algorithm for Density Estimation and Clustering in Sensor Networks[J]. IEEE Trans. On Signal Process, 2003, 51(8): 2245-2253.
DOI: 10.1109/tsp.2003.814623
Google Scholar
[5]
Su-young Shin, Jong-suk Choi, Byoung-hoon Kim, et al. Improved Ultrasonic Beacon Systems for Indoor Localization[C]. Proc. Int. Conf. on Control, Automation and Systems(ICCAS2005), Korea, Jun. 2005: 1366-1371.
DOI: 10.1109/efta.2007.4416875
Google Scholar
[6]
N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, S. Teller. The Cricket Compass for Context-Aware Mobile Applications[C]. Proc. 7th ACM Mobicom, Jul. 2001: 1-14.
DOI: 10.1145/381677.381679
Google Scholar
[7]
Kim H. S., J. S. Choi. Advanced Indoor Localization Using Ultrasonic Sensor and Digital Compass[C]. Proc. Intl. Conf. On Control, Automation and Systems(ICCAS), Seoul, Korea, 2008: 223-226.
DOI: 10.1109/iccas.2008.4694553
Google Scholar
[8]
Y L Song, Q H Meng, J J Zhang, et al. Non-crosstalk Ultrasonic Ranging System Excited Using Chaotic Sine Frequency Modulated Sequences[C]. Image Analysis and Signal Processing (IASP), 2011 International Conference on. IEEE, 2011: 373-377.
DOI: 10.1109/iasp.2011.6109066
Google Scholar
[9]
Gonzalez, J. R., C. J. Bleakley. High-Precision Robust Broadband Ultrasonic Location and Orientation Estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(5): 832-844.
DOI: 10.1109/jstsp.2009.2027795
Google Scholar
[10]
Yoshiyuki Nakamura, Ryosuke Kobayashi, Masateru Minami, Takuichi Nishimura. Implementation of Indoor Location and Orientation Estimation System Using Ultrasonic and Radio[C]. Proc. SICE Annual Conf., 2007, 1-8: 2459-2463.
DOI: 10.1109/sice.2007.4421404
Google Scholar
[11]
M. Hazas, A. Hopper. Broadband Ultrasonic Location Systems for Improved Indoor Positioning[J]. IEEE Trans. Mobile Computing, 2006, 5(5): 536-547.
DOI: 10.1109/tmc.2006.57
Google Scholar
[12]
X Luo, W J O'Brien, C L Julien. Comparative Evaluation of Received Signal-Strength Index (RSSI) Based Indoor Localization Techniques for Construction Jobsites[J]. Advanced Engineering Informatics, 2011, 25(2): 355-363.
DOI: 10.1016/j.aei.2010.09.003
Google Scholar
[13]
K. Yedavalli, B. Krishnamachari. Sequence-Based Localization in Wireless Sensor Networks[J]. IEEE Trans. On Mobile Computing, 2008, 7(1): 81-94.
DOI: 10.1109/tmc.2008.4387797
Google Scholar
[14]
Juergen Graefenstein, M. Essayed Bouzouraa. Robust Method for Outdoor Localization of a Mobile Robot Using Received Signal Strength in Low Power Wireless Networks[C]. Proc. IEEE Intl. Conf. on Robotics and Automation, Pasadena, USA, May 2008: 33-38.
DOI: 10.1109/robot.2008.4543183
Google Scholar
[15]
X Wang, S Yuan, R Laur, et al. Dynamic Localization Based On Spatial Reasoning With RSSI in Wireless Sensor Networks For Transport Logistics[J]. Sensors and Actuators A: Physical, 2011, 171(2): 421-428.
DOI: 10.1016/j.sna.2011.08.015
Google Scholar
[16]
B. Ferris, D. Haehnel, D. Fox. Gaussian Processes for Signal Strength-Based Location Estimation[C]. Proc. 2006 Robotics: Science and Systems Conf., MIT Press, 2006: 1-8.
DOI: 10.15607/rss.2006.ii.039
Google Scholar
[17]
H. Wang, H. Lenz, A. Szabo, J. Bamberger, U. Hanebeck. WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors[C]. Proc. of Workshop On Positioning, Navigation and Communication, 2007: 1-7.
DOI: 10.1109/wpnc.2007.353604
Google Scholar
[18]
Y Peng, Q H Luo, D Wang, et al. WSN Localization Method Using Interval Data Clustering[J]. Acta Autom. Sin, 2012, 38(7): 1190-1199.
DOI: 10.3724/sp.j.1004.2012.01190
Google Scholar
[19]
Graefenstein J., Bouzouraa M. E. Robust Method for Outdoor Localization of a Mobile Robot Using Received Signal in Low Power Wireless Networks[C]. Proc. IEEE Intl. Conf. on Robotics and Automation, Pasadena, CA, USA, May 2008: 33-38.
DOI: 10.1109/robot.2008.4543183
Google Scholar
[20]
H. Cho, M. Kang, J. Park, B. Park, H. Kim. Performance Analysis of Location Estimation Algorithm in ZigBee Networks Using Received Signal Strength[C]. Proc of 21st Intl. Conf. On Advanced Information Networking and Applications, 2007, 2: 302-306.
DOI: 10.1109/ainaw.2007.283
Google Scholar
[21]
Z Xiong, Z Y Song, A Scalera, et al. Enhancing WSN-Based Indoor Positioning and Tracking through RFID Technology[C]. RFID Technology (EURASIP RFID), 2012 Fourth International EURASIP Workshop on. IEEE, 2012: 107-114.
DOI: 10.1109/rfid.2012.26
Google Scholar
[22]
P. Bahl, V. N. Padmanabhan, A. Balachandran. Enhancements To the Radar User Location and Tracking System[R]. Microsoft Research Technical Report, 2000. B.
Google Scholar
[23]
K. Lorincz, M. Welsh. MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking[C]. Proc. of Intl. Workshop On Location and Context-Awareness, (2005).
DOI: 10.1007/11426646_7
Google Scholar
[24]
H. S. Ahn , Wonpil Yu. Environmental-Adaptive RSSI-Based Indoor Localization[J]. IEEE Trans. On Automation Science and Engineering, 2009, 6(4): 626-633.
DOI: 10.1109/tase.2008.2009126
Google Scholar
[25]
B. Xiao, H. Chen, S. Zhou. Distributed Localization Using a Moving Beacon in Wireless Sensor Networks[J]. IEEE Trans. On Parallel and Distributed Systems, 2008, 19(5): 587-600.
DOI: 10.1109/tpds.2007.70773
Google Scholar
[26]
Moon-Sik Lee. A Low-Complexity Planar Antenna Array for Wireless Communication Applications: Robust Source Localization in Impulsive Noise[J]. ETRI Journal, 2010, 32(6): 837-842.
DOI: 10.4218/etrij.10.0109.0748
Google Scholar
[27]
C. Morelli, M. Nicoli, V. Rampa, U. Spagnolini. Hidden Markov Models for Radio Localization in Mixed LOS/NLOS Conditions[J]. IEEE Trans. On Signal Processing, 2007, 55(4): 1525-1542.
DOI: 10.1109/tsp.2006.889978
Google Scholar
[28]
B. S. Chen, C.Y. Yang, F. K. Liao, J. F. Liao. Mobile Location Estimator in Rough Wireless Environment Using Extended Kalman-Based IMM and Data Fusion[J]. IEEE Trans. On Vehicular Technology, 2009, 58(3): 1157-1169.
DOI: 10.1109/tvt.2008.928649
Google Scholar
[29]
C. Y. Yang, B. S. Chen, F. K. Liao. Mobile Location Estimation Using Fuzzy-Based IMM and Data Fusion[J]. IEEE Trans. On Mobile Computing, 2010, 9(10): 1424-1436.
DOI: 10.1109/tmc.2010.105
Google Scholar
[30]
S. Venkatesh, R.M. Buehrer. Non-line-of-sight Identification in Ultra-wideband Systems Based on Received Signal Statistics[J]. IET Microwaves, Antennas & Propagation, 2007, 1(6): 1120-1130.
DOI: 10.1049/iet-map:20060273
Google Scholar
[31]
Destino G., Macagnano D., de Abreu G.T.F. Hypothesis Testing and Iterative WLS Minimiza-tion for WSN Localization Under LOS/NLOS Conditions[C]. Proc. of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007: 2150-2155.
DOI: 10.1109/acssc.2007.4487620
Google Scholar
[32]
M. P. Wylie, J. Holtzman. The Non-line of Sight Problem in Mobile Location Estimation[C]. Proc. Of IEEE Universal Personal Communications Conference, 1996, 2: 827-831.
DOI: 10.1109/icupc.1996.562692
Google Scholar
[33]
K Yu, E Dutkiewicz. Geometry and Motion-Based Positioning Algorithms for Mobile Tracking in NLOS Environments[J]. Mobile Computing, IEEE Transactions on, 2012, 11(2): 254-263.
DOI: 10.1109/tmc.2011.24
Google Scholar
[34]
Casas, R., A. Marco, J. J. Guerrero, J. Falco. Robust Estimator for Non-line-of-sight Error Mitigation in Indoor Localization[J]. EURASIP Journal on Applied Signal Processing , 2006, 1: 156-156.
DOI: 10.1155/asp/2006/43429
Google Scholar
[35]
I. Guven, C. -C. Chong, F. Watanabe, H. Inamura. NLOS Identification and Weighted Least-squares Localization for UWB Systems Using Multipath Channel Statistics[J]. EURASIP Journal on Advanced Signal Process, 2008, 1: 1-14.
DOI: 10.1155/2008/271984
Google Scholar
[36]
G Ding, Z Tan, L Zhang, et al. Hybrid TOA/AOA Cooperative Localization In Non-Line-Of-Sight Environments[C]. Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th. IEEE, 2012: 1-5.
DOI: 10.1109/vetecs.2012.6239884
Google Scholar
[37]
Nawaz Sarfraz, Trigoni Niki. Robust Localization in Cluttered Environments with NLOS Propagation[C]. Proc. Of IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, 2010: 166-175.
DOI: 10.1109/mass.2010.5663983
Google Scholar
[38]
L. Jiao, J. P. Xing, J. Zhang, et al. A New NLOS TOA-Based Wireless Sensor Network Localization Algorithm with Robust Character [J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1625-1629.
Google Scholar
[39]
Marano S., Gifford W.M., Wymeersch H., Win M.Z. NLOS Identification and Mitigation for Localization Based on UWB Experimental Data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026-1035.
DOI: 10.1109/jsac.2010.100907
Google Scholar
[40]
Kai-Ten Feng, Chao-lin Chen, Chien-Hua Chen. GALE: An Enhanced Geometry-Assisted Location Estimation Algorithm for NLOS Environments[J]. IEEE Trans. On Mobile Computing, 2008, 7(2): 199-213.
DOI: 10.1109/tmc.2007.70721
Google Scholar
[41]
Lin-Chih Chu, po-Hsuan Tseng, Kai-Ten Feng. GDOP-Assisted Location Estimation Algorithms in Wireless Location Systems[C]. Proc. Of the IEEE Global Telecommunications Conference, Nov. 2008: 1-5.
DOI: 10.1109/glocom.2008.ecp.1032
Google Scholar
[42]
Venkatesh S., Buehrer R.M. A Linear Programming Approach to NLOS Error Mitigation in Sensor Networks[C]. Proc. Of the Fifth Intl. Conf. on Information Processing in Sensor Networks, 2006: 301-308.
DOI: 10.1145/1127777.1127823
Google Scholar
[43]
Youngbae Kong, Younggoo Kwon, Gwitae Park. Robust Localization over Obstructed Interferences for Inbuilding Wireless Applications[J]. IEEE Trans. On Consumer Electronics, 2009, 55(1): 105-111.
DOI: 10.1109/tce.2009.4814421
Google Scholar