Survey on Mobile Target Localization in Wireless Sensor Networks

Article Preview

Abstract:

As a novel technology of information acquisition and processing, Wireless Sensor Network (WSN) has been widely used for complex large-scale localization tasks. With global distribution and sensing ability, wireless sensor network can provide valid optimal localization for mobile targets. According to the key problems of mobile target localization under wireless sensor network, this paper depicted current research status in both of line-of-sight and non-line-of-sight environments. Typical and representative algorithms are sorted and their ideas are evaluated. Finally, we discussed and anticipated the future research direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-139

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. -Y. Lin, W. C. Peng, Y. C. Tseng. Efficient in-Network Moving Object Tracking in Wireless Sensor Networks[J]. IEEE Trans. On Mobile Computing, 2006, 5(8): 1044-1056.

DOI: 10.1109/tmc.2006.115

Google Scholar

[2] J. L. Williams, J. W. Fisher, A. S. Willsky. Optimization Approaches to Dynamic Routing of Measurements and Models in A Sensor Network Object Tracking Problem[C]. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process (ICASSP), Mar. 2005, 5: 1061-1064.

DOI: 10.1109/icassp.2005.1416490

Google Scholar

[3] B. H. Cheng, R. E. Hudson, F. Lorenzelli, L. Vandenberghe, K. Yao. Distributed Gauss-Newton Method for Node Localization in Wireless Sensor Networks[C]. Proc. IEEE 6th Workshop on Signal Process, Advanced Wireless Communication, Jun. 2005: 915-919.

DOI: 10.1109/spawc.2005.1506273

Google Scholar

[4] R. D. Nowak. Distributed EM Algorithm for Density Estimation and Clustering in Sensor Networks[J]. IEEE Trans. On Signal Process, 2003, 51(8): 2245-2253.

DOI: 10.1109/tsp.2003.814623

Google Scholar

[5] Su-young Shin, Jong-suk Choi, Byoung-hoon Kim, et al. Improved Ultrasonic Beacon Systems for Indoor Localization[C]. Proc. Int. Conf. on Control, Automation and Systems(ICCAS2005), Korea, Jun. 2005: 1366-1371.

DOI: 10.1109/efta.2007.4416875

Google Scholar

[6] N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, S. Teller. The Cricket Compass for Context-Aware Mobile Applications[C]. Proc. 7th ACM Mobicom, Jul. 2001: 1-14.

DOI: 10.1145/381677.381679

Google Scholar

[7] Kim H. S., J. S. Choi. Advanced Indoor Localization Using Ultrasonic Sensor and Digital Compass[C]. Proc. Intl. Conf. On Control, Automation and Systems(ICCAS), Seoul, Korea, 2008: 223-226.

DOI: 10.1109/iccas.2008.4694553

Google Scholar

[8] Y L Song, Q H Meng, J J Zhang, et al. Non-crosstalk Ultrasonic Ranging System Excited Using Chaotic Sine Frequency Modulated Sequences[C]. Image Analysis and Signal Processing (IASP), 2011 International Conference on. IEEE, 2011: 373-377.

DOI: 10.1109/iasp.2011.6109066

Google Scholar

[9] Gonzalez, J. R., C. J. Bleakley. High-Precision Robust Broadband Ultrasonic Location and Orientation Estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(5): 832-844.

DOI: 10.1109/jstsp.2009.2027795

Google Scholar

[10] Yoshiyuki Nakamura, Ryosuke Kobayashi, Masateru Minami, Takuichi Nishimura. Implementation of Indoor Location and Orientation Estimation System Using Ultrasonic and Radio[C]. Proc. SICE Annual Conf., 2007, 1-8: 2459-2463.

DOI: 10.1109/sice.2007.4421404

Google Scholar

[11] M. Hazas, A. Hopper. Broadband Ultrasonic Location Systems for Improved Indoor Positioning[J]. IEEE Trans. Mobile Computing, 2006, 5(5): 536-547.

DOI: 10.1109/tmc.2006.57

Google Scholar

[12] X Luo, W J O'Brien, C L Julien. Comparative Evaluation of Received Signal-Strength Index (RSSI) Based Indoor Localization Techniques for Construction Jobsites[J]. Advanced Engineering Informatics, 2011, 25(2): 355-363.

DOI: 10.1016/j.aei.2010.09.003

Google Scholar

[13] K. Yedavalli, B. Krishnamachari. Sequence-Based Localization in Wireless Sensor Networks[J]. IEEE Trans. On Mobile Computing, 2008, 7(1): 81-94.

DOI: 10.1109/tmc.2008.4387797

Google Scholar

[14] Juergen Graefenstein, M. Essayed Bouzouraa. Robust Method for Outdoor Localization of a Mobile Robot Using Received Signal Strength in Low Power Wireless Networks[C]. Proc. IEEE Intl. Conf. on Robotics and Automation, Pasadena, USA, May 2008: 33-38.

DOI: 10.1109/robot.2008.4543183

Google Scholar

[15] X Wang, S Yuan, R Laur, et al. Dynamic Localization Based On Spatial Reasoning With RSSI in Wireless Sensor Networks For Transport Logistics[J]. Sensors and Actuators A: Physical, 2011, 171(2): 421-428.

DOI: 10.1016/j.sna.2011.08.015

Google Scholar

[16] B. Ferris, D. Haehnel, D. Fox. Gaussian Processes for Signal Strength-Based Location Estimation[C]. Proc. 2006 Robotics: Science and Systems Conf., MIT Press, 2006: 1-8.

DOI: 10.15607/rss.2006.ii.039

Google Scholar

[17] H. Wang, H. Lenz, A. Szabo, J. Bamberger, U. Hanebeck. WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors[C]. Proc. of Workshop On Positioning, Navigation and Communication, 2007: 1-7.

DOI: 10.1109/wpnc.2007.353604

Google Scholar

[18] Y Peng, Q H Luo, D Wang, et al. WSN Localization Method Using Interval Data Clustering[J]. Acta Autom. Sin, 2012, 38(7): 1190-1199.

DOI: 10.3724/sp.j.1004.2012.01190

Google Scholar

[19] Graefenstein J., Bouzouraa M. E. Robust Method for Outdoor Localization of a Mobile Robot Using Received Signal in Low Power Wireless Networks[C]. Proc. IEEE Intl. Conf. on Robotics and Automation, Pasadena, CA, USA, May 2008: 33-38.

DOI: 10.1109/robot.2008.4543183

Google Scholar

[20] H. Cho, M. Kang, J. Park, B. Park, H. Kim. Performance Analysis of Location Estimation Algorithm in ZigBee Networks Using Received Signal Strength[C]. Proc of 21st Intl. Conf. On Advanced Information Networking and Applications, 2007, 2: 302-306.

DOI: 10.1109/ainaw.2007.283

Google Scholar

[21] Z Xiong, Z Y Song, A Scalera, et al. Enhancing WSN-Based Indoor Positioning and Tracking through RFID Technology[C]. RFID Technology (EURASIP RFID), 2012 Fourth International EURASIP Workshop on. IEEE, 2012: 107-114.

DOI: 10.1109/rfid.2012.26

Google Scholar

[22] P. Bahl, V. N. Padmanabhan, A. Balachandran. Enhancements To the Radar User Location and Tracking System[R]. Microsoft Research Technical Report, 2000. B.

Google Scholar

[23] K. Lorincz, M. Welsh. MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking[C]. Proc. of Intl. Workshop On Location and Context-Awareness, (2005).

DOI: 10.1007/11426646_7

Google Scholar

[24] H. S. Ahn , Wonpil Yu. Environmental-Adaptive RSSI-Based Indoor Localization[J]. IEEE Trans. On Automation Science and Engineering, 2009, 6(4): 626-633.

DOI: 10.1109/tase.2008.2009126

Google Scholar

[25] B. Xiao, H. Chen, S. Zhou. Distributed Localization Using a Moving Beacon in Wireless Sensor Networks[J]. IEEE Trans. On Parallel and Distributed Systems, 2008, 19(5): 587-600.

DOI: 10.1109/tpds.2007.70773

Google Scholar

[26] Moon-Sik Lee. A Low-Complexity Planar Antenna Array for Wireless Communication Applications: Robust Source Localization in Impulsive Noise[J]. ETRI Journal, 2010, 32(6): 837-842.

DOI: 10.4218/etrij.10.0109.0748

Google Scholar

[27] C. Morelli, M. Nicoli, V. Rampa, U. Spagnolini. Hidden Markov Models for Radio Localization in Mixed LOS/NLOS Conditions[J]. IEEE Trans. On Signal Processing, 2007, 55(4): 1525-1542.

DOI: 10.1109/tsp.2006.889978

Google Scholar

[28] B. S. Chen, C.Y. Yang, F. K. Liao, J. F. Liao. Mobile Location Estimator in Rough Wireless Environment Using Extended Kalman-Based IMM and Data Fusion[J]. IEEE Trans. On Vehicular Technology, 2009, 58(3): 1157-1169.

DOI: 10.1109/tvt.2008.928649

Google Scholar

[29] C. Y. Yang, B. S. Chen, F. K. Liao. Mobile Location Estimation Using Fuzzy-Based IMM and Data Fusion[J]. IEEE Trans. On Mobile Computing, 2010, 9(10): 1424-1436.

DOI: 10.1109/tmc.2010.105

Google Scholar

[30] S. Venkatesh, R.M. Buehrer. Non-line-of-sight Identification in Ultra-wideband Systems Based on Received Signal Statistics[J]. IET Microwaves, Antennas & Propagation, 2007, 1(6): 1120-1130.

DOI: 10.1049/iet-map:20060273

Google Scholar

[31] Destino G., Macagnano D., de Abreu G.T.F. Hypothesis Testing and Iterative WLS Minimiza-tion for WSN Localization Under LOS/NLOS Conditions[C]. Proc. of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007: 2150-2155.

DOI: 10.1109/acssc.2007.4487620

Google Scholar

[32] M. P. Wylie, J. Holtzman. The Non-line of Sight Problem in Mobile Location Estimation[C]. Proc. Of IEEE Universal Personal Communications Conference, 1996, 2: 827-831.

DOI: 10.1109/icupc.1996.562692

Google Scholar

[33] K Yu, E Dutkiewicz. Geometry and Motion-Based Positioning Algorithms for Mobile Tracking in NLOS Environments[J]. Mobile Computing, IEEE Transactions on, 2012, 11(2): 254-263.

DOI: 10.1109/tmc.2011.24

Google Scholar

[34] Casas, R., A. Marco, J. J. Guerrero, J. Falco. Robust Estimator for Non-line-of-sight Error Mitigation in Indoor Localization[J]. EURASIP Journal on Applied Signal Processing , 2006, 1: 156-156.

DOI: 10.1155/asp/2006/43429

Google Scholar

[35] I. Guven, C. -C. Chong, F. Watanabe, H. Inamura. NLOS Identification and Weighted Least-squares Localization for UWB Systems Using Multipath Channel Statistics[J]. EURASIP Journal on Advanced Signal Process, 2008, 1: 1-14.

DOI: 10.1155/2008/271984

Google Scholar

[36] G Ding, Z Tan, L Zhang, et al. Hybrid TOA/AOA Cooperative Localization In Non-Line-Of-Sight Environments[C]. Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th. IEEE, 2012: 1-5.

DOI: 10.1109/vetecs.2012.6239884

Google Scholar

[37] Nawaz Sarfraz, Trigoni Niki. Robust Localization in Cluttered Environments with NLOS Propagation[C]. Proc. Of IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, 2010: 166-175.

DOI: 10.1109/mass.2010.5663983

Google Scholar

[38] L. Jiao, J. P. Xing, J. Zhang, et al. A New NLOS TOA-Based Wireless Sensor Network Localization Algorithm with Robust Character [J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1625-1629.

Google Scholar

[39] Marano S., Gifford W.M., Wymeersch H., Win M.Z. NLOS Identification and Mitigation for Localization Based on UWB Experimental Data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026-1035.

DOI: 10.1109/jsac.2010.100907

Google Scholar

[40] Kai-Ten Feng, Chao-lin Chen, Chien-Hua Chen. GALE: An Enhanced Geometry-Assisted Location Estimation Algorithm for NLOS Environments[J]. IEEE Trans. On Mobile Computing, 2008, 7(2): 199-213.

DOI: 10.1109/tmc.2007.70721

Google Scholar

[41] Lin-Chih Chu, po-Hsuan Tseng, Kai-Ten Feng. GDOP-Assisted Location Estimation Algorithms in Wireless Location Systems[C]. Proc. Of the IEEE Global Telecommunications Conference, Nov. 2008: 1-5.

DOI: 10.1109/glocom.2008.ecp.1032

Google Scholar

[42] Venkatesh S., Buehrer R.M. A Linear Programming Approach to NLOS Error Mitigation in Sensor Networks[C]. Proc. Of the Fifth Intl. Conf. on Information Processing in Sensor Networks, 2006: 301-308.

DOI: 10.1145/1127777.1127823

Google Scholar

[43] Youngbae Kong, Younggoo Kwon, Gwitae Park. Robust Localization over Obstructed Interferences for Inbuilding Wireless Applications[J]. IEEE Trans. On Consumer Electronics, 2009, 55(1): 105-111.

DOI: 10.1109/tce.2009.4814421

Google Scholar