[1]
H. Jen, M. Lin, L. Li, H. Wu, W. Huang, P. Cheng and E. W. Diau, High-performance large-scale flexible dye-sensitized solar cells based on anodic tio2 nanotube arrays, ACS Applied Materials & Interfaces 5 (2013) 10098-104.
DOI: 10.1021/am402687j
Google Scholar
[2]
B. Lee, C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C. Yeh, T. J. Marks, M. G. Kanatzidis and R. P. H. Chang, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SNi6 as a hole conductor, J. Am. Chem. Soc. 136 (2014).
DOI: 10.1021/ja508464w
Google Scholar
[3]
K. Hu, H. A. Severin, B. D. Koivisto, K. C. D. Robson, E. Schott, R. Arratia-Perez, G. J. Meyer and C. P. Berlinguette, Direct spectroscopic evidence for constituent heteroatoms enhancing charge recombination at a tio2−ruthenium dye interface, J. Phys. Chem. C 118 (2014).
DOI: 10.1021/jp500879p
Google Scholar
[4]
A. J. Mozer, M. J. Griffith, G. Tsekouras, P. Wagner, G. G. Wallace, S. Mori, K. Sunahara, M. Miyashita, J. C. Earles, K. C. Gordon, L. Du, R. Katoh, A. Furube and D. L. Officer, Zn−Zn Porphyrin dimer-sensitized solar cells: toward 3-d light harvesting, J. Am. Chem. Soc. 131 (2009).
DOI: 10.1021/ja9057713
Google Scholar
[5]
G. E. Zervaki, M. S. Roy, M. K. Panda, P. A. Angaridis, E. Chrissos, G. D. Sharma and A. G. Coutsolelos, Efficient Sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin–porphyrin dyads, Inorg. Chem. 52 (2013) 9813-25.
DOI: 10.1021/ic400774p
Google Scholar
[6]
J. Lu, B. Zhang, H. Yuan, X. Xu, K. Cao, J. Cui, S. Liu, Y. Shen, Y. Cheng, J. Xu and M. Wang, D−π–A Porphyrin sensitizers with π-extended conjugation for mesoscopic solar cells, J. Phys. Chem. C 118 (2014) 14739-48.
DOI: 10.1021/jp5014829
Google Scholar
[7]
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd. and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, 6 (2014).
DOI: 10.1038/nchem.1861
Google Scholar
[8]
C. F. A. Negre, R. L. Milot, L. A. Martini, W. Ding, R. H. Crabtree, C. A. Schmuttenmaer and V. S. Batista, Efficiency of interfacial electron transfer from Zn-porphyrin dyes into tio2 correlated to the linker single molecule conductance, J. Phys. Chem. C 117 (2013).
DOI: 10.1021/jp408738b
Google Scholar
[9]
F. Odobel, E. Blart, M. Lagree, M. Villieras, H. Boujtita, N. El Murr, S. Caramori and C. Alberto Bignozzi, Porphyrin dyes for TiO2 sensitization, J. Mater. Chem. 13 (2003) 502-10.
DOI: 10.1039/b210674d
Google Scholar
[10]
Z. Liu, W. Li, S. Topa, X. Xu, X. Zeng, Z. Zhao, M. Wang, W. Chen, F. Wang, Y. Cheng and H. He, Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells, ACS Applied Materials & Interfaces 6 (2014).
DOI: 10.1021/am5022396
Google Scholar
[11]
X. Lu, C. L. Wu, S. Wei and W. Guo, DFT/TD-DFT investigation of electronic structures and spectra properties of cu-based dye sensitizers, J. Phys. Chem. A 114 (2009) 1178-84.
DOI: 10.1021/jp909731t
Google Scholar