Computational Study of Bone Tissue Mechanical Properties Dependence on Nanoscale Morphological Characteristics

Article Preview

Abstract:

A bone tissue is modeled at the nanolevel as a composite with a quasiperiodic structure, consisting of the hydroxyapatite crystals, which are embedded into the collagen fibrils. The aim of the research is to analyze the influence of the bone nanostructure on its mechanical and strength properties. Such studies are important for the creating artificial bone-substitute materials. The influence analysis of the morphological characteristics (hydroxyapatite crystals disorientation, sizes and orientation of mineral bridges, shape of hydroxyapatite crystals, mineralization) on the local stress-strain state and mechanical properties of the representative volume element of bone is carried out by means of the direct finite element simulation and homogenization. The comparison of the obtained results with experimental data demonstrates a good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Currey, Three analogies to explain the mechanical properties of bone, Biorheology. 2 (1964) 1-10.

DOI: 10.3233/bir-1964-2101

Google Scholar

[2] A.H. Burstein, J.M. Zika, K.G. Heiple, L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone, J. Bone Joint Surg. Am. 57 (1975) 956-961.

DOI: 10.2106/00004623-197557070-00013

Google Scholar

[3] S. Weiner, W. Traub, Bone structure: from angstroms to microns, FASEB J. 6 (1992) 879-885.

DOI: 10.1096/fasebj.6.3.1740237

Google Scholar

[4] G. Galilei, Dialogues concerning two new sciences. 1638. (Translated, New York: Macmillan, 1914).

Google Scholar

[5] J. Wolff, Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der Ausseren Knochenform. Sitzung der phys. -math. Mitteilung, 13 (1884) 23 p.

Google Scholar

[6] J.D. Currey, Mechanical properties of vertebrate hard tissues, Proc. Inst. Mech. Eng. H. 212 (1998) 399-411.

DOI: 10.1243/0954411981534178

Google Scholar

[7] Yu.I. Denisov-Nikolsky et al., Actual problems of theoretical and clinical osteoartrologe, Moscow: News, (2005).

Google Scholar

[8] A.S. Avrunin, A.S. Semenov and I.V. Fedorov et al, Influence of the mineral bond between associations of crystallites on bone matrix mechanical properties. Modeling by the finite element method, Traumatology and Orthopaedy. 68 (2013) 72-83.

DOI: 10.21823/2311-2905-2013--2-72-83

Google Scholar

[9] I. Jager, P. Fratzl, Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles, Biophys. J. 79 (2000) 1737-1746.

DOI: 10.1016/s0006-3495(00)76426-5

Google Scholar

[10] A.C. Lawson, J.T. Czernuszka, Collagen-calcium phosphate composites, Proc. Inst. Mech. Eng. H. 212 (1998) 413-425.

DOI: 10.1243/0954411981534187

Google Scholar

[11] P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. Mater. Chem. 14 (2004) 2115-2123.

DOI: 10.1039/b402005g

Google Scholar

[12] A.S. Semenov, PANTOCRATOR—the finite element program specialized on the nonlinear problem solution. Proc. V Int. Conf. Sci and eng. problems of predicting the reliability and service life of structures and methods of their solution, B.E. Melnikov (ed) (2003).

Google Scholar

[13] W. Bonfield, M.D. Grynpas, Anisotropy of the Young's modulus of bone Nature, 270 (1977) 453-454.

DOI: 10.1038/270453a0

Google Scholar

[14] R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, J.C. Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomech. 17 (1984) 349-361.

DOI: 10.1016/0021-9290(84)90029-0

Google Scholar

[15] C.H. Turner, J.Y. Rho, Y. Takano et al, The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques, J. Biomech. 32 (1999) 437-441.

DOI: 10.1016/s0021-9290(98)00177-8

Google Scholar