[1]
J.D. Currey, Three analogies to explain the mechanical properties of bone, Biorheology. 2 (1964) 1-10.
DOI: 10.3233/bir-1964-2101
Google Scholar
[2]
A.H. Burstein, J.M. Zika, K.G. Heiple, L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone, J. Bone Joint Surg. Am. 57 (1975) 956-961.
DOI: 10.2106/00004623-197557070-00013
Google Scholar
[3]
S. Weiner, W. Traub, Bone structure: from angstroms to microns, FASEB J. 6 (1992) 879-885.
DOI: 10.1096/fasebj.6.3.1740237
Google Scholar
[4]
G. Galilei, Dialogues concerning two new sciences. 1638. (Translated, New York: Macmillan, 1914).
Google Scholar
[5]
J. Wolff, Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der Ausseren Knochenform. Sitzung der phys. -math. Mitteilung, 13 (1884) 23 p.
Google Scholar
[6]
J.D. Currey, Mechanical properties of vertebrate hard tissues, Proc. Inst. Mech. Eng. H. 212 (1998) 399-411.
DOI: 10.1243/0954411981534178
Google Scholar
[7]
Yu.I. Denisov-Nikolsky et al., Actual problems of theoretical and clinical osteoartrologe, Moscow: News, (2005).
Google Scholar
[8]
A.S. Avrunin, A.S. Semenov and I.V. Fedorov et al, Influence of the mineral bond between associations of crystallites on bone matrix mechanical properties. Modeling by the finite element method, Traumatology and Orthopaedy. 68 (2013) 72-83.
DOI: 10.21823/2311-2905-2013--2-72-83
Google Scholar
[9]
I. Jager, P. Fratzl, Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles, Biophys. J. 79 (2000) 1737-1746.
DOI: 10.1016/s0006-3495(00)76426-5
Google Scholar
[10]
A.C. Lawson, J.T. Czernuszka, Collagen-calcium phosphate composites, Proc. Inst. Mech. Eng. H. 212 (1998) 413-425.
DOI: 10.1243/0954411981534187
Google Scholar
[11]
P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. Mater. Chem. 14 (2004) 2115-2123.
DOI: 10.1039/b402005g
Google Scholar
[12]
A.S. Semenov, PANTOCRATOR—the finite element program specialized on the nonlinear problem solution. Proc. V Int. Conf. Sci and eng. problems of predicting the reliability and service life of structures and methods of their solution, B.E. Melnikov (ed) (2003).
Google Scholar
[13]
W. Bonfield, M.D. Grynpas, Anisotropy of the Young's modulus of bone Nature, 270 (1977) 453-454.
DOI: 10.1038/270453a0
Google Scholar
[14]
R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, J.C. Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone, J. Biomech. 17 (1984) 349-361.
DOI: 10.1016/0021-9290(84)90029-0
Google Scholar
[15]
C.H. Turner, J.Y. Rho, Y. Takano et al, The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques, J. Biomech. 32 (1999) 437-441.
DOI: 10.1016/s0021-9290(98)00177-8
Google Scholar