[1]
E.F. Bradley, Superalloys: A Technical Guide, Metals Park, OH: ASM, (1988).
Google Scholar
[2]
M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, second ed., Metals Park, OH: ASM, (2002).
Google Scholar
[3]
T. Liang, H. Guo, H. Peng and S. Gong, Microstructural evolution of CoCrAlY bond coat on Ni-based superalloy DZ 125 at 1050 °C, Surf. Coat. Technol. 205 (2011) 4374-4379.
DOI: 10.1016/j.surfcoat.2011.03.034
Google Scholar
[4]
S. Bose, High temperature coatings, Butterworth-Heinemann, Elsevier, Oxford, UK, (2007).
Google Scholar
[5]
Y. Tamarin, Protective coating for turbine blades, Metals Park, OH: ASM, (2002).
Google Scholar
[6]
J. Cai, S.Z. Yang, L. Ji, Q.F. Guan, Z.P. Wang and Z.Y. Han, Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam, Surf. Coat. Technol. 251 (2014).
DOI: 10.1016/j.surfcoat.2014.04.029
Google Scholar
[7]
Yu.A. Nikolaev, A.A. Vasil'ev and V. Yu. Ulianitsky, Gas detonation and its application for technique and technologies, Combust. Explo. Shock. 39 (4) (2003) 22-54.
Google Scholar
[8]
V. Ulianitsky, V. Shtertser, Z. Zlobin and I. Smurov, Computer controlled detonation spraying: From pro cess fundamentals toward advanced applications, J. Therm. Spray Technol. 20 (4) (2011) 791-801.
DOI: 10.1007/s11666-011-9649-6
Google Scholar
[9]
D.V. Dudina, I.S. Batraev, V. Yu. Ulianitsky, M.A. Korchagin, G.V. Golubkova, S. Yu. Abramov and O.I. Lomovsky, Control of Interfacial Interaction during Detonation Spraying of Ti3SiC2–Cu Composites, Inorg. Mater. 50 (1) (2014) 35-39.
DOI: 10.1134/s0020168514010038
Google Scholar
[10]
A. Weisenburger, G. Rizzi, A. Scrivani, G. Mueller and J.R. Nicholls, Pulsed electron beam treatment of MCrAlY bondcoats for EB-PVD TBC systems part 1 of 2: Coating production, Surf. Coat. Technol. 202 (2007) 704-708.
DOI: 10.1016/j.surfcoat.2007.07.022
Google Scholar
[11]
O.P. Kul'ment'eva and A.D. Pogrebnyak, Effect of pulsed plasma and high-current electron beam treatments on the structure and properties of nickel-based coatings, J. Surf. Investig-X-Ra. 2 (3) (2008) 454-473.
DOI: 10.1134/s1027451008030245
Google Scholar
[12]
Standard Methods of Preparing Metallographic specimens, Annual Book of ASTM Standards, American Soc. for Metals, E-3-86, (1986).
Google Scholar
[13]
N. Vasilik, N. Tyurin, O. Kolisnichenko, RU Patent 2506341 (2012).
Google Scholar
[14]
M. Kovaleva, Yu. Tyurin, O. Kolisnichenko, M. Prozorova and M. Arseenko, Properties of detonation nanostructured titanium-based coatings, J. Therm. Spray Technol. 22 (4) (2013) 518-524.
DOI: 10.1007/s11666-013-9909-8
Google Scholar
[15]
M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko and E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.
DOI: 10.1016/j.surfcoat.2013.06.086
Google Scholar
[16]
G.J. Moskal, The porosity assessment of thermal barrier coatings obtained by APS method, Achieve. Mater. Manuf. Eng. 20 (1-2) (2007) 483-486.
Google Scholar
[17]
H.T. Wang, C.J. Li, GJ. Yang and C.X. Li, Effect of heat treatment on the microstructure and property of cold-sprayed nanostructured FeAl/Al2O3 intermetallic composite coating, Vacuum 83 (1) (2008) 146-152.
DOI: 10.1016/j.vacuum.2008.03.094
Google Scholar
[18]
M. Kovaleva, Yu. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, V. Sirota and I. Pavlenko, Effect of heat treatment on the microstructure and microhardness of detonation nanostructured Al2O3 coatings, J. Therm. Spray Technol. 23 (7) (2014).
DOI: 10.1007/s11666-014-0126-x
Google Scholar