Deposition and Characterization of CoCrAlY Coatings by Multi-Chamber Detonation Sprayer

Article Preview

Abstract:

In this study, a multi-chamber detonation sprayer (MCDS) was applied for deposition of Co-Cr-Al-Y powder coatings (200-250 mm thick) on nickel base superalloy JS6U (Russia). Powder Co-25Cr-11Al-1Y (d(0.1): 6.6 μm, d(0.5): 62.7 μm, d(0.9): 123,4 μm) was used to deposit of a coatings. The coatings microstructures and phase compositions were characterized using SEM, OM and XRD techniques. Measurement of the microhardness of samples was done with a micro-hardness tester DM – 8B using a Vickers’s indenter with load on of 0.1 N. It was established that MCDS has provided the conditions for formation of a dense layer with porosity 0.05% and microhardness 600±50 HV0.1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.F. Bradley, Superalloys: A Technical Guide, Metals Park, OH: ASM, (1988).

Google Scholar

[2] M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, second ed., Metals Park, OH: ASM, (2002).

Google Scholar

[3] T. Liang, H. Guo, H. Peng and S. Gong, Microstructural evolution of CoCrAlY bond coat on Ni-based superalloy DZ 125 at 1050 °C, Surf. Coat. Technol. 205 (2011) 4374-4379.

DOI: 10.1016/j.surfcoat.2011.03.034

Google Scholar

[4] S. Bose, High temperature coatings, Butterworth-Heinemann, Elsevier, Oxford, UK, (2007).

Google Scholar

[5] Y. Tamarin, Protective coating for turbine blades, Metals Park, OH: ASM, (2002).

Google Scholar

[6] J. Cai, S.Z. Yang, L. Ji, Q.F. Guan, Z.P. Wang and Z.Y. Han, Surface microstructure and high temperature oxidation resistance of thermal sprayed CoCrAlY coating irradiated by high current pulsed electron beam, Surf. Coat. Technol. 251 (2014).

DOI: 10.1016/j.surfcoat.2014.04.029

Google Scholar

[7] Yu.A. Nikolaev, A.A. Vasil'ev and V. Yu. Ulianitsky, Gas detonation and its application for technique and technologies, Combust. Explo. Shock. 39 (4) (2003) 22-54.

Google Scholar

[8] V. Ulianitsky, V. Shtertser, Z. Zlobin and I. Smurov, Computer controlled detonation spraying: From pro cess fundamentals toward advanced applications, J. Therm. Spray Technol. 20 (4) (2011) 791-801.

DOI: 10.1007/s11666-011-9649-6

Google Scholar

[9] D.V. Dudina, I.S. Batraev, V. Yu. Ulianitsky, M.A. Korchagin, G.V. Golubkova, S. Yu. Abramov and O.I. Lomovsky, Control of Interfacial Interaction during Detonation Spraying of Ti3SiC2–Cu Composites, Inorg. Mater. 50 (1) (2014) 35-39.

DOI: 10.1134/s0020168514010038

Google Scholar

[10] A. Weisenburger, G. Rizzi, A. Scrivani, G. Mueller and J.R. Nicholls, Pulsed electron beam treatment of MCrAlY bondcoats for EB-PVD TBC systems part 1 of 2: Coating production, Surf. Coat. Technol. 202 (2007) 704-708.

DOI: 10.1016/j.surfcoat.2007.07.022

Google Scholar

[11] O.P. Kul'ment'eva and A.D. Pogrebnyak, Effect of pulsed plasma and high-current electron beam treatments on the structure and properties of nickel-based coatings, J. Surf. Investig-X-Ra. 2 (3) (2008) 454-473.

DOI: 10.1134/s1027451008030245

Google Scholar

[12] Standard Methods of Preparing Metallographic specimens, Annual Book of ASTM Standards, American Soc. for Metals, E-3-86, (1986).

Google Scholar

[13] N. Vasilik, N. Tyurin, O. Kolisnichenko, RU Patent 2506341 (2012).

Google Scholar

[14] M. Kovaleva, Yu. Tyurin, O. Kolisnichenko, M. Prozorova and M. Arseenko, Properties of detonation nanostructured titanium-based coatings, J. Therm. Spray Technol. 22 (4) (2013) 518-524.

DOI: 10.1007/s11666-013-9909-8

Google Scholar

[15] M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko and E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.

DOI: 10.1016/j.surfcoat.2013.06.086

Google Scholar

[16] G.J. Moskal, The porosity assessment of thermal barrier coatings obtained by APS method, Achieve. Mater. Manuf. Eng. 20 (1-2) (2007) 483-486.

Google Scholar

[17] H.T. Wang, C.J. Li, GJ. Yang and C.X. Li, Effect of heat treatment on the microstructure and property of cold-sprayed nanostructured FeAl/Al2O3 intermetallic composite coating, Vacuum 83 (1) (2008) 146-152.

DOI: 10.1016/j.vacuum.2008.03.094

Google Scholar

[18] M. Kovaleva, Yu. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, V. Sirota and I. Pavlenko, Effect of heat treatment on the microstructure and microhardness of detonation nanostructured Al2O3 coatings, J. Therm. Spray Technol. 23 (7) (2014).

DOI: 10.1007/s11666-014-0126-x

Google Scholar