The Simulation of the Electrolyte Temperature Effect on the Value Change of the Microhardness of Anodic Alumina Oxide Layers

Article Preview

Abstract:

In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-34

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. AlMawlawi, N. Coombs, M. Moskovits, J. Appl. Phys. 70 (1991) 4421.

Google Scholar

[2] N. Haberkorn, J.S. Gutmann, P. Theato, ACS Nano 3 (2009) 1415.

Google Scholar

[3] G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet, X. Correig, Electrochim. Acta 52 (2006) 1771.

DOI: 10.1016/j.electacta.2006.01.081

Google Scholar

[4] J.H. Holtz, S.A. Asher, Nature 389 (1997) 829.

Google Scholar

[5] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Nat. Mater. 3 (2004) 444.

Google Scholar

[6] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, U. Gösele, J. Appl. Phys. 91 (2002) 2343.

DOI: 10.1063/1.1435830

Google Scholar

[7] Santos, L. Vojkuvka, J. Pallarés, J. Ferré-Borrull, L.F. Marsal, Nanoscale Research Letters 4 (2009) 1021.

DOI: 10.1007/s11671-009-9351-5

Google Scholar

[8] T. Aerts, Th. Dimogerontakis, I. DeGraeve, J. Fransaer, H. Terryn, Surface & Coatings Technology 201 (2007) 7310–7317.

DOI: 10.1016/j.surfcoat.2007.01.044

Google Scholar

[9] L.E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Surface and Coatings Technology 165 (2003) 309–315.

DOI: 10.1016/s0257-8972(02)00750-8

Google Scholar

[10] L. Vojkuvka, A. Santos, J. Pallarès, J. Ferré-Borrull, L.F. Marsal, J.P. Celis, Surface & Coatings Technology 206 (2012) 2115–2124.

DOI: 10.1016/j.surfcoat.2011.09.040

Google Scholar

[11] P.G., Sheasby, R. Pinner, The Surface Treatment and Finishing of Aluminium and its Alloys, 6th Edition, ASM International, USA/ Finishing Publications Ltd, UK ( 2001) 743.

Google Scholar

[12] B.A. Scott, Trans. Inst. Met. Finish. 43 (1965) 1.

Google Scholar

[13] S. Koizumi, S. Ninagawa, S.J. Ueda, J. Metal Finishing Society Japan 19 (1968) 504.

Google Scholar

[14] K. Okubo, Met. Finish. 81 (1983) 63.

Google Scholar

[15] A.P. Gruar, D.R. Gabe, Trans. Inst. Met. Finish. 63 (1985) 1.

Google Scholar

[16] L.E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Surf. Coat. Technol. 165 (2003) p.309.

Google Scholar

[17] J. Herenguel, R. Segond, Rev. Met. 46 (1949) 377.

Google Scholar

[18] R.W. Thomas, Trans. Inst. Met. Finish. 59 (1981) 97.

Google Scholar

[19] R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments. John Wiley & Sons, Inc. (2003) 752.

Google Scholar