Properties and Peculiarities of WCCoCr Coatings Formed by Multi-Chamber Detonation Sprayer

Article Preview

Abstract:

Multi-chamber detonation sprayer (MCDS) was applied for deposition of WC-Co-Cr powder coatings on corrosion-resistant steel. Powder AMPERIT®554.074 WC-Co-Cr was used to deposit of a coatings. The coatings microstructures and phase compositions were characterized using SEM, OM and XRD techniques. Measurement of the microhardness of samples was done with a micro-hardness tester DM – 8B using a Vickers’s indenter with load on of 0.3 N. It was established that MCDS has provided the conditions for formation of a dense layer with porosity of less than 1.5 % and microhardness 750±50 HV0.3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-21

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Halls, The deformation and aging of mild steel: III discussion of results, Proc. Phys. Soc. Lond. B, 64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[2] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.

Google Scholar

[3] T.N. Rhys-Jones, Thermally sprayed coating systems for surface protection and clearance control applications in aero engines, Surf. Coat. Technol. 43-44 (1990) 402-415.

DOI: 10.1016/0257-8972(90)90092-q

Google Scholar

[4] R.V. Hillery, Coatings for performance retention, J. Vac. Sci. Technol. A, 4 (6) (1986) 2624-2628.

Google Scholar

[5] K. Laul and M. Dorfamn, New chromium carbide-nickel chrome materials for high temperature wear applications, in: C.C. Berndt (Ed. ), Proceedings of First International Thermal Spray Conference, Montreal, Canada, May 8-11, 2000, ASM International, Materials Park, Ohio, USA, (2000).

DOI: 10.31399/asm.cp.itsc2000p0561

Google Scholar

[6] Y.C. Zhu, K. Yukimura, C.X. Ding and P.Y. Zhang, Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying, Thin Solid Films, 388 (2001) 277-282.

DOI: 10.1016/s0040-6090(01)00805-7

Google Scholar

[7] Yu.A. Nikolaev, A.A. Vasil'ev and V. Yu. Ulianitsky, Gas detonation and its application for technique and technologies, Combust. Explo. Shock. 39 (4) (2003) 22-54.

Google Scholar

[8] V. Ulianitsky, V. Shtertser, Z. Zlobin and I. Smurov, Computer controlled detonation spraying: From pro cess fundamentals toward advanced applications, J. Therm. Spray Technol. 20 (4) (2011) 791-801.

DOI: 10.1007/s11666-011-9649-6

Google Scholar

[9] G. Barbezat, A.R. Nicoll and A. Sickinger, Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications, Wear, 162-164 (1993) 529-537.

DOI: 10.1016/0043-1648(93)90538-w

Google Scholar

[10] A. Karimi and Ch. Verdon, Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WC-Co(Cr) coatings, Surf. Coat. Technol. 57 (1993) 81-89.

DOI: 10.1016/0257-8972(93)90340-t

Google Scholar

[11] V. Ulianitsky, I. Batraev, I. Smurov and A. Nikulina, Binary fuel detonation spraying of WC/Co, in: C.C. Berndt (Ed. ), Proceedings of International thermal spray conference and exposition ITSC 2014, Spain, Barcelona, 21-23 May 2014, Düsseldorf, DVS Media Gmb, (2014).

DOI: 10.31399/asm.cp.itsc2014p0985

Google Scholar

[12] J.K.N. Murthy and B. Venkataraman, Abrasive wear behaviour of WC-CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes, Surf. Coat. Technol. 200 (2006) 2642-2652.

DOI: 10.1016/j.surfcoat.2004.10.136

Google Scholar

[13] V. Ulianitsky, A. Shtertser, C. Muders, S. Veselov, S. Zlobin and X. Jang, Computer Controlled Detonation Spraying of WC/Co coatings containing MoS2 solid lubricant, Surf. Coat. Technol. 206 (2012) 4763-4770.

DOI: 10.1016/j.surfcoat.2012.03.043

Google Scholar

[14] A.A. Shtertser, I. Yu. Smurov, V. Yu. Ulianitsky and S.B. Zlobin, Comparative analysis of tribological properties of cermet detonation sprayed coatings, Netherlands, Maastricht, 2-4 June, 2008, in: E. Lugscheider, Ed., Proceedings of International thermal spray conference and exposition ITSC-2008, Düsseldorf, DVS Media Gmb, (2014).

DOI: 10.31399/asm.cp.itsc2008p0113

Google Scholar

[15] Standard Methods of Preparing Metallographic specimens, Annual Book of ASTM Standards, American Soc. for Metals, E-3-86 (1986).

Google Scholar

[16] N. Vasilik, N. Tyurin and O. Kolisnichenko, RU Patent 2506341 (2012).

Google Scholar

[17] M. Kovaleva, Yu. Tyurin, O. Kolisnichenko, M. Prozorova and M. Arseenko, Properties of detonation nanostructured titanium-based coatings, J. Therm. Spray Technol. 22 (4) (2013) 518-524.

DOI: 10.1007/s11666-013-9909-8

Google Scholar

[18] M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko and E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.

DOI: 10.1016/j.surfcoat.2013.06.086

Google Scholar

[19] G.J. Moskal, The porosity assessment of thermal barrier coatings obtained by APS method, Achieve. Mater. Manuf. Eng. 20 (1-2) (2007) 483-486.

Google Scholar

[20] H.T. Wang, C.J. Li, GJ. Yang and C.X. Li, Effect of heat treatment on the microstructure and property of cold-sprayed nanostructured FeAl/Al2O3 intermetallic composite coating, Vacuum 83 (1) (2008) 146-152.

DOI: 10.1016/j.vacuum.2008.03.094

Google Scholar

[21] M. Kovaleva, Yu. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, V. Sirota and I. Pavlenko, Effect of heat treatment on the microstructure and microhardness of detonation nanostructured Al2O3 coatings, J. Therm. Spray Technol. 23 (7) (2014).

DOI: 10.1007/s11666-014-0126-x

Google Scholar