[1]
M. Huber, W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich and A. Baiker, Flame synthesis of calcium carbonate nanoparticles, Chem. Commun. 5 (2005) 648-650.
DOI: 10.1039/b411725e
Google Scholar
[2]
M. Dagaonkar, A. Mehra, R. Jain and H. Heeres, Synthesis of CaCO3 Nanoparticles by Carbonation of Lime Solutions in Reverse Micellar Systems, Chem. Eng. Res. Des. 82 (2004) 1438-1443.
DOI: 10.1205/cerd.82.11.1438.52028
Google Scholar
[3]
C. Wang, P. Xiao, J. Zhao, X. Zhao, Y. Liu and Z. Wang, Biomimetic synthesis of hydrophobic calcium carbonate nanoparticles via a carbonation route, Powder Technol. 170 (2006) 31-35.
DOI: 10.1016/j.powtec.2006.08.016
Google Scholar
[4]
M. Mantilaka, R. Rajapakse, D. Karunaratne and H. Pitawala, Preparation of amorphous calcium carbonate nanoparticles from impure dolomitic marble with the aid of poly (acrylic acid) as a stabilizer, Adv. Powder Technol. 25 (2014) 591-598.
DOI: 10.1016/j.apt.2013.09.008
Google Scholar
[5]
G. Wu, Y. Wang, S. Zhu and J. Wang, Preparation of ultrafine calcium carbonate particles with micropore dispersion method, Powder Technol. 172 (2007) 82-88.
DOI: 10.1016/j.powtec.2006.10.031
Google Scholar
[6]
H. Cölfen, Precipitation of carbonates: recent progress in controlled production of complex shapes, Current opinion in colloid & interface science, 8 (2003) 23-31.
DOI: 10.1016/s1359-0294(03)00012-8
Google Scholar
[7]
H. Casanova and L.P. Higuita, Synthesis of calcium carbonate nanoparticles by reactive precipitation using a high pressure jet homogenizer, Chem. Eng. J. 175 (2011) 569-578.
DOI: 10.1016/j.cej.2011.09.051
Google Scholar
[8]
X. Chen, Y. Zhu, Y. Guo, B. Zhou, X. Zhao, Y. Du, H. Lei, M. Li and Z. Wang, Carbonization synthesis of hydrophobic CaCO3 at room temperature, Colloids Surf. A, 353 (2010) 97-103.
DOI: 10.1016/j.colsurfa.2009.10.029
Google Scholar
[9]
S. El-Sheikh, S. El-Sherbiny, A. Barhoum and Y. Deng, Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics, Colloids Surf. A, 422 (2013) 44-49.
DOI: 10.1016/j.colsurfa.2013.01.020
Google Scholar
[10]
J. Chen and L. Shao, Mass production of nanoparticles by high gravity reactive precipitation technology with low cost, China Particuology, 1 (2003) 64-69.
DOI: 10.1016/s1672-2515(07)60110-9
Google Scholar
[11]
T. Ogino, T. Suzuki and K. Sawada, The formation and transformation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta, 51 (1987) 2757-2767.
DOI: 10.1016/0016-7037(87)90155-4
Google Scholar
[12]
R. Babou‐Kammoe, S. Hamoudi, F. Larachi and K. Belkacemi, Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions, The Canadian J. Chem. Eng. 90 (2012) 26-33.
DOI: 10.1002/cjce.20673
Google Scholar
[13]
W.L. McCabe, J.C. Smith and P. Harriott, Unit operations of chemical engineering, McGraw-Hill New York, (1993).
Google Scholar
[14]
R. Agnihotri, S.K. Mahuli, S.S. Chauk and L.S. Fan, Influence of surface modifiers on the structure of precipitated calcium carbonate, Ind. Eng. Chem. Res. 38 (1999) 2283-2291.
DOI: 10.1021/ie9900521
Google Scholar
[15]
R.C. Bennett, H. Fiedelman and A.D. Randolph, Crystallizer influenced nucleation, Chem. Eng. Prog. 69 (1973) 86-93.
Google Scholar
[16]
J. Yu, M. Lei, B. Cheng and X. Zhao, Effects of PAA additive and temperature on morphology of calcium carbonate particles, J. Solid State Chem. 177 (2004) 681-689.
DOI: 10.1016/j.jssc.2003.08.017
Google Scholar
[17]
S. Gopi and V.K. Subramanian, Anomalous transformation of calcite to varterite: Significant of HEDTA on crystallization behavior and polymorphism at elevated temperature, Indian J. Chem. 52A (2013) 342-349.
Google Scholar
[18]
M. Vucak, M.N. Pons, J. Peric and H. Vivier, Effect of precipitation conditions on the morphology of calcium carbonate: quantification of crystal shapes using image analysis, Powder Technol. 97 (1998) 1-5.
DOI: 10.1016/s0032-5910(97)03375-5
Google Scholar