[1]
P. Kiatsimkul, W.R. Sutterlin and J.G. Suppes. Selective hydrolysis of epoxidized soybean oils by commercially available lipase: Effect of epoxy group on enzymatic hyrolysis. Journal of Molecular Catalyst B: Enzymatic. Vol 40 (2006), pp.55-60.
DOI: 10.1016/j.molcatb.2006.04.008
Google Scholar
[2]
M. Ruesch and S. Warwel. Complete and Partial Epoxidation of Plant Oils by Lipase-Catalyzed Perhydrolysis. Industrial Crops and Products. Vol 9 (1999), p.125–132.
DOI: 10.1016/s0926-6690(98)00023-5
Google Scholar
[3]
Bashar Mudhaffar Abdullah, Nadia Salih, Jumat Salimon. Optimization of the chemoenzymatic mono-epoxidation of linoleic acid using D-optimal design. Journal of Saudi Chemical Society Vol. 18(2014), p.276–287.
DOI: 10.1016/j.jscs.2011.07.012
Google Scholar
[4]
M., Ferrari, E.L. Ghisalberti, U.M. Pagnoni, and F. Pelizzoni. Monoepoxidation of methyl linoleat. Journal of the American Oil Chemists' Society. Vol. 45 (1968), pp.649-651.
DOI: 10.1007/bf02541248
Google Scholar
[5]
E.A. Gerbase, R.J. Gregόrio, M. Martinelli, C.M. Brasil and N.F.A. Mendes. Epoxidation of Soybean Oils by the Methyltrioxorhenium-CH2Cl2/H2O2 Catalyst biphasis systerm. Jurnal American Oils AOCS. Vol 79. No. 2 (2002), p.179 – 181.
Google Scholar
[6]
X. Sun and Z. Zhang. Optimizing the novel formulation of liposome-polycation-DNA complexes (LPD) by central composite design. Archibes of Pharmacal Research. Vol. 27(7) (2004), pp.797-805.
DOI: 10.1007/bf02980151
Google Scholar
[7]
Jie. Yang, M.D. Morton, D.W. Hill, & D.F. Grant. NMR and HPLC-MS/MS analysis of synthecally prepared linoleic acid diol glucoronides. Chemistry and Physical of Lipids. Vol. 140 (2006), p.75–87.
DOI: 10.1016/j.chemphyslip.2006.01.007
Google Scholar
[8]
AOAC Official Method (1997b) 993. 20.
Google Scholar
[9]
V. G. Vaibhav, C. P. Narayan and V.P. Anand. Epoxidation of Karanja (Pongamia glabra) Oil by H2O2. JAOCS, Vol. 83 No. 7 (2006), pp.635-640.
Google Scholar
[10]
J.N. Brown and R.C. Brown. Process optimization of an auger pyrolyser with heat carrier using response surface methodology. Bioresour Technol Vol. 103 (2012), pp.405-14.
DOI: 10.1016/j.biortech.2011.09.117
Google Scholar
[11]
R.H. Myers and D.C. Montgomery. Response Surface Methodology: Process and Products Optimization Using Designed Experiment. 2nd Edition. United State of America (2002), John Wilet & Sons.
Google Scholar
[12]
Sajal Kanti Dutta, Gopinath Halder, Mrinal Kanti Mandal. Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach. Energy Vol. 71 (2014), pp.579-587.
DOI: 10.1016/j.energy.2014.04.108
Google Scholar
[13]
N.M. Razali, H. Salamatinia, K.T. Lee. and A.Z. Abdullah. Optimization of Process Parameters for Alkaline-Catalysed Transesterification of Palm Oil Using Response Surface Methodology. Sains Malaysiana. Vol. 39 (5) (2010), pp.805-809.
Google Scholar
[14]
R.D. O'Brien, E.F. Walter and P.J. Wan. Introduction to fat and oils technology. United State of America (2000), AOCS Press.
Google Scholar
[15]
S. Liu, C. Zhang, P. Hong and H. Ji. Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: optimization of process parameters. Journal of Food Engineering. Vol 73( 3), 2006, p.203–209.
DOI: 10.1016/j.jfoodeng.2005.01.020
Google Scholar