Corrosion Behavior of Porous Mg Alloy in Simulated Body Fluid

Article Preview

Abstract:

Magnesium (Mg) alloy possess a high demand in biomedical applications due to their biocompatibility and biodegradability. However the main limitation for Mg alloy is their fast degradation rates in physiological environment. This paper reports the preparation of porous Mg alloy through powder metallurgy technique by using ammonium bicarbonate (NH4HCO3) as space holder material and hexane as solvent. The corrosion behavior and degradation rate of porous Mg alloy was measured after 24h, 96h and 168h respectively of immersion in simulated body fluid (SBF) with compact Mg alloy as control. The results reported that degradation rate increased with increasing immersion period, yet the compact Mg alloy shows better degradation rate than porous Mg alloy. Moreover, the pH of SBF changed proportional to immersion period and stabilized after 96h of immersion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1093-1097

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Razavi, M. Fathi, O. Savabi, B. H. Beni, S. M. Razavi, D. Vashaee, and L. Tayebi, Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6), Appl. Surf. Sci., vol. 288, p.130–137, Jan. (2014).

DOI: 10.1016/j.apsusc.2013.09.160

Google Scholar

[2] J. Wang, L. Qin, K. Wang, J. Wang, Y. Yue, Y. Li, J. Tang, and W. Li, Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro., Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 33, no. 7, p.4416–26, Oct. (2013).

DOI: 10.1016/j.msec.2013.06.041

Google Scholar

[3] M. Razavi, M. H. Fathi, and M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Mater. Sci. Eng. A, vol. 527, no. 26, p.6938–6944, Oct. (2010).

DOI: 10.1016/j.msea.2010.07.063

Google Scholar

[4] M. Razavi, M. H. Fathi, and M. Meratian, Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications, Mater. Charact., vol. 61, no. 12, p.1363–1370, Dec. (2010).

DOI: 10.1016/j.matchar.2010.09.008

Google Scholar

[5] F. Wu, C. Liu, B. O'Neill, J. Wei, and Y. Ngothai, Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering, Appl. Surf. Sci., vol. 258, no. 19, p.7589–7595, Jul. (2012).

DOI: 10.1016/j.apsusc.2012.04.094

Google Scholar

[6] T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, vol. 27, no. 15, p.2907–15, May (2006).

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[7] C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of biocompatible porous Ti and Mg, Scr. Mater., vol. 45, no. 10, p.1147–1153, Nov. (2001).

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[8] Nurul Husna Z., C.C. Lee, S. Norbahiyah, A.B. Sanuddin, Processing and characterization of porous Mg alloy for biomedical applications, Aust. J. Basic Appl. Sci. (Accepted to be publish).

Google Scholar

[9] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review., Biomaterials, vol. 27, no. 9, p.1728–34, Mar. (2006).

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[10] H. Zhuang, Y. Han, and A. Feng, Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, Mater. Sci. Eng. C, vol. 28, no. 8, p.1462–1466, Dec. (2008).

DOI: 10.1016/j.msec.2008.04.001

Google Scholar

[11] X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Liu, and Y. X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett., vol. 64, no. 17, p.1871–1874, Sep. (2010).

DOI: 10.1016/j.matlet.2010.06.015

Google Scholar

[12] J. Čapek and D. Vojtěch, Properties of porous magnesium prepared by powder metallurgy, Mater. Sci. Eng. C, vol. 33, no. 1, p.564–569, Jan. (2013).

DOI: 10.1016/j.msec.2012.10.002

Google Scholar

[13] M. Razavi, M. H. Fathi, and M. Meratian, Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications, Mater. Lett., vol. 64, no. 22, p.2487–2490, Nov. (2010).

DOI: 10.1016/j.matlet.2010.07.079

Google Scholar

[14] Y. Z. Yong Wang, Mei Wei, Jiacheng Gao, Jinzhu Hu, Corrosion process of pure magnesium in simulated body fluid, Mater. Lett., vol. 62, p.2181–2184, (2008).

DOI: 10.1016/j.matlet.2007.11.045

Google Scholar