[1]
M. Razavi, M. Fathi, O. Savabi, B. H. Beni, S. M. Razavi, D. Vashaee, and L. Tayebi, Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6), Appl. Surf. Sci., vol. 288, p.130–137, Jan. (2014).
DOI: 10.1016/j.apsusc.2013.09.160
Google Scholar
[2]
J. Wang, L. Qin, K. Wang, J. Wang, Y. Yue, Y. Li, J. Tang, and W. Li, Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro., Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 33, no. 7, p.4416–26, Oct. (2013).
DOI: 10.1016/j.msec.2013.06.041
Google Scholar
[3]
M. Razavi, M. H. Fathi, and M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Mater. Sci. Eng. A, vol. 527, no. 26, p.6938–6944, Oct. (2010).
DOI: 10.1016/j.msea.2010.07.063
Google Scholar
[4]
M. Razavi, M. H. Fathi, and M. Meratian, Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications, Mater. Charact., vol. 61, no. 12, p.1363–1370, Dec. (2010).
DOI: 10.1016/j.matchar.2010.09.008
Google Scholar
[5]
F. Wu, C. Liu, B. O'Neill, J. Wei, and Y. Ngothai, Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering, Appl. Surf. Sci., vol. 258, no. 19, p.7589–7595, Jul. (2012).
DOI: 10.1016/j.apsusc.2012.04.094
Google Scholar
[6]
T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, vol. 27, no. 15, p.2907–15, May (2006).
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[7]
C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of biocompatible porous Ti and Mg, Scr. Mater., vol. 45, no. 10, p.1147–1153, Nov. (2001).
DOI: 10.1016/s1359-6462(01)01132-0
Google Scholar
[8]
Nurul Husna Z., C.C. Lee, S. Norbahiyah, A.B. Sanuddin, Processing and characterization of porous Mg alloy for biomedical applications, Aust. J. Basic Appl. Sci. (Accepted to be publish).
Google Scholar
[9]
M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review., Biomaterials, vol. 27, no. 9, p.1728–34, Mar. (2006).
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[10]
H. Zhuang, Y. Han, and A. Feng, Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, Mater. Sci. Eng. C, vol. 28, no. 8, p.1462–1466, Dec. (2008).
DOI: 10.1016/j.msec.2008.04.001
Google Scholar
[11]
X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Liu, and Y. X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett., vol. 64, no. 17, p.1871–1874, Sep. (2010).
DOI: 10.1016/j.matlet.2010.06.015
Google Scholar
[12]
J. Čapek and D. Vojtěch, Properties of porous magnesium prepared by powder metallurgy, Mater. Sci. Eng. C, vol. 33, no. 1, p.564–569, Jan. (2013).
DOI: 10.1016/j.msec.2012.10.002
Google Scholar
[13]
M. Razavi, M. H. Fathi, and M. Meratian, Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications, Mater. Lett., vol. 64, no. 22, p.2487–2490, Nov. (2010).
DOI: 10.1016/j.matlet.2010.07.079
Google Scholar
[14]
Y. Z. Yong Wang, Mei Wei, Jiacheng Gao, Jinzhu Hu, Corrosion process of pure magnesium in simulated body fluid, Mater. Lett., vol. 62, p.2181–2184, (2008).
DOI: 10.1016/j.matlet.2007.11.045
Google Scholar