Corrosion Studies of Gadolinium Based Anodic Coating on AZ91D Magnesium Alloy for Biomedical Implant

Article Preview

Abstract:

Magnesium alloys with their biodegradable characteristics can be a very good candidate to be used in biomedical implants. AZ91D magnesium alloy had been chosen for investigating the effect of gadolinium concentration on corrosion performance. AZ91D magnesium alloy was immersed in La (NO3)3, Mg (NO3)2, and Gd (NO3)3 in simulated body fluid (SBF) solution. The structure and formation mechanism of the coating are discussed in detail through surface morphology, corrosion rate and electrochemical test. The effects of gadolinium in different concentration on the corrosion performance of magnesium substrate are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1071-1075

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Karimi, T. Nickchi, and A. Alfantazi, Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in phosphate buffered saline solutions, Corros. Sci., vol. 53, no. 10, p.3262–3272, Oct. (2011).

DOI: 10.1016/j.corsci.2011.06.009

Google Scholar

[2] D. Xue, Y. Yun, Z. Tan, Z. Dong, and M. J. Schulz, In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials, J. Mater. Sci. Technol., vol. 28, no. 3, p.261–267, Mar. (2012).

DOI: 10.1016/s1005-0302(12)60051-6

Google Scholar

[3] M. Razavi, M. Fathi, O. Savabi, B. H. Beni, S. M. Razavi, D. Vashaee, and L. Tayebi, Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6), Appl. Surf. Sci., vol. 288, p.130–137, Jan. (2014).

DOI: 10.1016/j.apsusc.2013.09.160

Google Scholar

[4] P. Salunke, V. Shanov, and F. Witte, High purity biodegradable magnesium coating for implant application, Mater. Sci. Eng. B, vol. 176, no. 20, p.1711–1717, Dec. (2011).

DOI: 10.1016/j.mseb.2011.07.002

Google Scholar

[5] S. Zhang, Q. Li, X. Yang, X. Zhong, Y. Dai, and F. Luo, Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni–TiO2 composite coating, Mater. Charact., vol. 61, no. 3, p.269–276, Mar. (2010).

DOI: 10.1016/j.matchar.2009.10.006

Google Scholar

[6] X. -N. Gu and Y. -F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, vol. 4, no. 2, p.111–115, May (2010).

Google Scholar

[7] Y. Zhang, C. Yan, F. Wang, H. Lou, and C. Cao, Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surf. Coatings Technol., vol. 161, no. 1, p.36–43, Nov. (2002).

DOI: 10.1016/s0257-8972(02)00342-0

Google Scholar

[8] H. Wu, G. Zhao, J. Mu, X. Li, and Y. He, Effects of ultrasonic dispersion on structure of electrodeposited Ni coating on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, vol. 20, pp. s703–s707, Jul. (2010).

DOI: 10.1016/s1003-6326(10)60566-3

Google Scholar

[9] C. Blawert, W. Dietzel, E. Ghali, and G. Song, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Adv. Eng. Mater., vol. 8, no. 6, p.511–533, Jun. (2006).

DOI: 10.1002/adem.200500257

Google Scholar

[10] X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Cheng, S. C. Wei, S. P. Zhong, T. F. Xi, and L. J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid., Acta Biomater., vol. 6, no. 12, p.4605–13, Dec. (2010).

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar