Growth Kinetic Study on Lyophilized and Cryopreserved Pleurotus sajor-caju Spawn

Article Preview

Abstract:

A study was conducted to determine the most optimal preservation technique for P. sajor-caju spawns which produce maximum specific growth rate and shortest doubling time by using contois kinetic model. The analyzed experimental data showed that lyophilized P. sajor-caju spawn showed the highest maximum specific growth rate, and shortest doubling time compared to cryopreserved P. sajor-caju spawn and 4oC stored P. spawn. There was no significant difference in aspect of growth rate between the lyophilization and cryopreservation techniques which were; 0.148 (μmax)/ (g/day) and 0.147(μmax)/ (g/day) respectively. Based on the result, lyophilization technique was considered as the best preservation technique for preserving P. sajor-caju spawn due to high maximum growth rate which indicates high survival after exposure to preservation treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1076-1080

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Franks, Biophysics and biochemistry of low temperature on biological membranes, in: G. J. Morris, and A. Clarkes (Eds. ), Effect of low temperature on biological membrane, Academic Press, London, 1981, 3–19.

Google Scholar

[2] K.K. Nakasone, S. W. Peterson, and S. C. Jong, Preservation and distribution of fungal cultures, in: M. S. Foster, G. F. Bills, and G. M. Mueller (Eds. ), Biodiversity of fungi: Inventory and monitoring methods, Elsevier Academic, USA, 2004, 37–47.

DOI: 10.1016/b978-012509551-8/50006-4

Google Scholar

[3] S. T. Chang, and D. G. Miles, The nutritional attributes and medicinal value of edible mushrooms, in: Edible mushrooms and their cultivation, CRC Press, Boca Raton, FL, 1989, 27-40.

DOI: 10.1201/9780203492086.ch2

Google Scholar

[4] D. Smith, The use of cryopreservation in the ex-situ conservation of fungi, Cryo-Lett. 19(1998) 79–90.

Google Scholar

[5] D. Smith, and A.H.S. Onions, The preservation and maintenance of living fungi, second ed., CAB International, Wallingford, (1994).

Google Scholar

[6] S.C. Jong, E.E. Davis, Germplasm preservation of edible fungi in culture through cryogenic storage, in: P.J. West, D.J. S.C. Jong, E.E. Davis, Germplasm preservation of edible fungi in culture through cryogenic storage. Elsevier, New York, (1986).

DOI: 10.1016/b978-0-444-42747-2.50028-2

Google Scholar

[7] K. Ibatsam, B. Rukhsana, and G. Nasim, (2012). Preservation of Penicillium species by lyophilization, African Journal of Food, Agriculture, Nutrition and Development. 12 (3)(2012) 6055-6064.

DOI: 10.18697/ajfand.51.10255

Google Scholar

[8] J. G. Day, and G. Stacey. 2007. Cryopreservation and Freeze-Drying Protocols. Totowa, New Jersey: Humana Press.

Google Scholar

[9] L. Homolka, Methods of cryopreservation in fungi. In V.K. Gupta et al. (Eds. ), Laboratory protocols in fungal biology: Current methods in fungal biology, Springer, 2013, 9-16.

DOI: 10.1007/978-1-4614-2356-0_2

Google Scholar

[10] Lara-Herrera, Isabel, Mata, Gerardo, and Gaitán-Hernández, Rigoberto, Evaluation of the viability of Pleurotus Spp. strains after liquid nitrogen cryopreservation. Revista de Microbiologia, 29(3)(2008).

DOI: 10.1590/s0001-37141998000300009

Google Scholar

[11] G. Mata, D. Salmones, and P. M. Ortega, Viability and mushroom production of Lentinula edodes and L. boryana strains (Fungi: Basidiomycetes) after cryogenic storage of spawn stocks, World Journal of Microbiology & Biotechnology. 16 (3) (2000).

Google Scholar

[12] S. C. Croan, H. H. Burdsall Jr, and R. M. Rentmeester, Preservation of tropical wood-inhabiting basidiomycetes, Mycologia 91(1999) 908–916.

DOI: 10.1080/00275514.1999.12061098

Google Scholar

[13] M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. S. Cameron, M. Alston, M. F. Stringer, R. P. Betts, J. Baranyi, M. W. Peck, and J. C. D. Hinton. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194(3): 686.

DOI: 10.1128/jb.06112-11

Google Scholar

[14] F. Ardestani. 2012. Survey of nutrient utilization and cell growth kinetic with Verhust, Contois, and Exponential models for Pennicillium brevicompactum ATCC 16024 in batch bioreactor. World Applied Sciences Journal. 16(1): 135-140.

Google Scholar