Correlation between Na2SiO3/NaOH and NaOH Molarity to Flexural Strength of Geopolymer Ceramic

Article Preview

Abstract:

Clay based geopolymer ceramic were produced through the geopolymerisation process by the alkali activation of kaolin with an activator solution which is mixture of sodium silicate and sodium hydroxide and undergoes heating at elevated temperature. The concentration of NaOH used in this study was in the range of 6 M-12 M. The ratio of kaolin to alkaline activator used is 1.0. Three different ratios of Na2SiO3/NaOH of 0.16, 0.24 and 0.32 were used to investigate the optimum flexural strength. The samples were cured at 80 °C for 24 hours and sintered at temperatures ranging from 900 °C-1200 °C. The optimum flexural strength of 86.833 MPa is obtained when the ratios of Na2SiO3/NaOH is 0.24 with the NaOH concentration of 12M at 1200 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-156

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Davidovits: Journal of Thermal Analysis. Vol. 37 (1991), pp.1633-1656.

Google Scholar

[2] K. J. D. Mackenzie, Valeria F. F Barbosa: Materials Reserach Bulletin. Vol. 38 (2003), pp.319-331.

Google Scholar

[3] J. S. J. Van Deventer, Hua Xu: International Journal of Mineral Processing. Vol. 59 (2000), pp.247-266.

Google Scholar

[4] H. Kamarudin, C.Y. Heah, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew: Physic Procedia. Vol. 22 (2011), pp.305-311.

DOI: 10.1016/j.phpro.2011.11.048

Google Scholar

[5] H. Kamarudin, C.Y. Heah, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew: Advanced Materials Research. Vol. 548 (2012), pp.42-47.

DOI: 10.4028/www.scientific.net/amr.548.42

Google Scholar

[6] P. Rovnaník: Construction and Building Materials. Vol. 24 (2010), pp.1176-1183.

Google Scholar

[7] O. Uchida, D. S. Perera, E. R. Vance and K. S. Finnie: J Mater Sci. Vol. 42 (2007), pp.3099-3106.

Google Scholar

[8] H. Kamarudin, C.Y. Heah, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew: Construction and Building Materials. Vol. 35 (2012), pp.912-922.

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[9] H. Kamarudin, C.Y. Heah, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and Y.M. Liew: International Journal of Minerals, Metallurgy andMaterials. Vol. 20 (2013), p.313.

DOI: 10.1007/s12613-013-0729-0

Google Scholar

[10] M. N. Rahman, Lutgard C. DE Jonghe, Sintering of Ceramics, in Handbook of Advanced Ceramics, ed. United States of America: Elsevier Inc., (2013).

Google Scholar

[11] L. M. Grover, C. Kuenzel, L. Vandeperre, A.R. Boccaccini, C.R. Cheeseman: Journal of the European Ceramic Society. Vol. 33 (2013), pp.251-258.

DOI: 10.1016/j.jeurceramsoc.2012.08.022

Google Scholar

[12] Ting-Hao Yeh, Ven-Gen Lee: Materials Science and Engineering A. Vol. 485 (2008), pp.5-13.

Google Scholar

[13] D. Jia, Peigang He, Tiesong Lin, Meirong Wang, Yu Zhou: Ceramics International. Vol. 36 (2010), pp.1447-1453.

Google Scholar

[14] J. L. Bell, Ning Xie, and Waltraud M. Kriven: The American Ceramic Society. Vol. 93 (2010), pp.2644-2649.

Google Scholar