Conductivity and Structural Studies of PEMA/ENR-50 Blend with LiCF3SO3 Salt

Article Preview

Abstract:

Solid polymer electrolytes (SPEs) comprising of a blend of Poly (ethyl methacrylate) (PEMA) and Epoxidized natural rubber-50 (ENR50) as polymer host and lithium triflate (LiCF3SO3) as dopant were prepared by solution cast technique. The blend based polymer electrolytes have a fixed PEMA/ENR50 ratio of 70:30 by wt. % as at this ratio ENR-50 imparted stable mechanical properties to the otherwise fragile PEMA. The incorporation of LiCF3SO3 into the blend is found to increase the conductivity of PEMA/ENR50. The highest conductivity achieved was 3.64 x 10-5 Scm-1 at 40wt. % LiCF3SO3. The structure of the samples was investigated by X-ray diffraction and the results show that the highest conducting sample is the most amorphous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-160

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Baskaran, S. Selvasekarapandian, N. Kuwata, T. Hattori: Solid State Ionics, 177 (2006), p.2679–2682.

DOI: 10.1016/j.ssi.2006.04.013

Google Scholar

[2] Z. Ahmad, N. A Al-Awadi, F. Al-Sagheer: Polymer Degradation and Stability, 93 (2008), pp.456-465.

DOI: 10.1016/j.polymdegradstab.2007.11.019

Google Scholar

[3] N.A. Zakaria, M.I.N. Isa, N.S. Mohamed, R.H.Y. Subban: Journal of Applied Polymer Science, Vol. 126 (2012), p.419–424.

Google Scholar

[4] N.A. Zakaria, S.Y.S. Yahaya, M.I.N. Isa, N.S. Mohamed, R.H.Y. Subban: Advanced Materials Research, Vols. 93-94 (2010), pp.429-432.

Google Scholar

[5] T. Fahmy, M.T. Ahmed: Polymer Testing, 20 (2001), p.477–484.

Google Scholar

[6] M.T. Ahmed, T. Fahmy: Polymer Testing, 18(1999), p.589–599.

Google Scholar

[7] L.N. Sim, S.R. Majid, A.K. Arof: Vibrational Spectroscopy, 58 (2012), p.57– 66.

Google Scholar

[8] L.N. Sim, S.R. Majid, A.K. Arof: Solid State Ionics, 200-210 (2012), pp.15-23.

Google Scholar

[9] S.F. Mohammad, N. Zainal, S. Ibrahim and N.S. Mohamed: Int. J. Electrochem. Sci., 8 (2013), p.6145 – 6153.

Google Scholar

[10] I. S. M. Noor, S. R. Majid, A. K. Arof, D. Djurado, S. Claro Neto, and A. Pawlicka: Solid State Ionics, 225(2012), p.649–653.

DOI: 10.1016/j.ssi.2012.03.019

Google Scholar

[11] T. Winie, and A. K. Arof: Ionics 10 (2004).

Google Scholar

[12] N. K. Anuar, N. Zainal, N. S. Mohamed, and R. H. Y. Subban: Advanced Material Research, 501 (2012), p.19–23.

Google Scholar

[13] N. Zainal, R. Idris, and N. S. Mohamed: Advanced Material Research, 545 (2012), p.303–307.

Google Scholar

[14] S. Amir, N. S. Mohamed, and R. H. Y. Subban: Advanced Materials Research, 93-94 (2010), p.381–384.

Google Scholar

[15] S. A. Hashmi, A. K. Thakur, and H. M. Upadhyaya: Eur. Polym. J. Vol. 34(9) (1998), p.1277–1282.

Google Scholar

[16] A. Deya, S. Karan, S.K. Dec: Indian Journal of Pure & Applied Physics , 51(3) (2013), p.281–288.

Google Scholar

[17] R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori: Solid State Ionics, 177(26-32) (2006), p.2679–2682.

DOI: 10.1016/j.ssi.2006.04.013

Google Scholar