Rheological and Thermal Study of Chitosan Filled Thermoplastic Elastomer Composites

Article Preview

Abstract:

The chitosan filled thermoplastic elastomer (TPE) composites with different filler loading was prepared by melt mixing at 180 °C. The effect of 3-aminopropyltriethoxysilane (3-APE) as coupling agent on the rheological and thermal properties of composites were investigated. The melt flow indexer was used to characterize the melt flow index (MFI) of TPE/Chitosan composites at temperature of 180 to 210 °C. It was found that addition of chitosan into composites had reduced the MFI values. Besides that, the MFI values of composites were found to increase linearly with temperature. The treated composites demonstrated lower MFI values, indicated that better interfacial bonding was established between chitosan and TPE and the flowability of the composite melts was hindered. The TGA results reported that the treated composites had better thermal stability and lower total weight loss as compared to untreated composites at similar filler loading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-38

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ismail, S.M. Shaari, N. Othman, Polym. Test., 30 (2011) 784-790.

Google Scholar

[2] H. Salmah, B.Y. Lim, P.L. Teh, J. Thermoplast. Compos. Mater., 26 (2013) 1155-1167.

Google Scholar

[3] H. Salmah, B.Y. Lim, P.L. Teh, Int. J. Polymer. Mater. Polymer. Biomater., 61 (2012) 1091-1101.

Google Scholar

[4] H. Salmah, S.C. Koay, O. Hakimah, J. Thermoplast. Compos. Mater., doi: 10. 1177/ 0892705711429981 (2012).

Google Scholar

[5] K.S. Chun, S. Husseinsyah, F.N. Azizi, Polym. -Plast. Technol. Eng., 52 (2013) 287-294.

Google Scholar

[6] Y. Zhao, J. Qiu, H. Feng, M. Zhang, J. Appl. Polym. Sci., 125 (2012) 3211-3220.

Google Scholar

[7] B. -S. Baek, J. -W. Park, B. -H. Lee, H. -J. Kim, J. Polym. Environ., 21 (2013) 702-709.

Google Scholar

[8] A. Sdrobiş, R.N. Darie, M. Totolin, G. Cazacu, C. Vasile, Composites, Part B, 43 (2012) 1873-1880.

DOI: 10.1016/j.compositesb.2012.01.064

Google Scholar

[9] A.P. Martínez-Camacho, M.O. Cortez-Rocha, A.Z. Graciano-Verdugo, F. Rodríguez-Félix, M.M. Castillo-Ortega, A. Burgos-Hernández, J.M. Ezquerra-Brauer, M. Plascencia-Jatomea, Carbohydr. Polym., 91 (2013) 666-674.

DOI: 10.1016/j.carbpol.2012.08.076

Google Scholar

[10] M. Sunilkumar, T. Francis, E.T. Thachil, A. Sujith, Chemical Engineering Journal, (2012) 114-124.

Google Scholar

[11] S. Mir, T. Yasin, P.J. Halley, H.M. Siddiqi, T. Nicholson, Carbohydr. Polym., 83 (2011) 414-421.

Google Scholar

[12] V. Janaki, B. -T. Oh, K. Shanthi, K. -J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Synth. Met., 162 (2012) 974-980.

DOI: 10.1016/j.synthmet.2012.04.015

Google Scholar

[13] H. Salmah, F. Amri, H. Kamarudin, Polym. -Plast. Technol. Eng., 51 (2012) 86-91.

Google Scholar

[14] T. Liu, Y. Lei, Q. Wang, S. Lee, Q. Wu, BioResources, 8 (2013) 4619-4632.

Google Scholar

[15] W. Yang, Z. -Y. Liu, G. -F. Shan, Z. -M. Li, B. -H. Xie, M. -B. Yang, Polym. Test., 24 (2005) 490-497.

Google Scholar

[16] H.M. d. Costa, V. r.D. Ramos, M.C.G. Rocha, Polym. Test., 24 (2005) 86-93.

Google Scholar

[17] M. Rides, C. Allen, H. Omloo, K. Nakayama, G. Cancelli, Polym. Test., 28 (2009) 572-591.

Google Scholar

[18] E.E. Ferg, L.L. Bolo, Polym. Test., 32 (2013) 1452-1459.

Google Scholar

[19] W. Yang, Z.Y. Liu, G.F. Shan, Z.M. Li, B.H. Xie, M.B. Yang, Polym. Test., 24 (2005) 490-497.

Google Scholar