Polyethersulfone/Polyvinyl Acetate Blend Membrane for CO2/CH4 Gas Separation

Article Preview

Abstract:

The synthesis of polyethersulfone (PES)/polyvinyl acetate (PVAc) blend membrane was successfully developed by dry phase inversion method. The membrane morphology characterized using Field Emission Electron Microscope (FESEM) showed both polymers were homogeneously mixed and a dense structure was formed. A shift in characteristic peak for most chemical groups was observed in blend membrane as analyzed by Fourier Transform Infrared (FTIR) analysis which suggests the presence of molecular interaction between the blend polymers. The permeability of carbon dioxide (CO2) and methane (CH4) gases was recorded at a constant pressure of 10 bars and room temperature. The permeability across polymer blend membrane showed better performance as compared with native polymer membrane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Nasir, H. Mukhtar, Z. Man, and D.F. Mohshim: Chem. Eng. Technol. Vol. 36 (2013), p.717.

Google Scholar

[2] A.F. Ismail, R. Rahim, and W. Rahman: Sep. Purif. Technol. Vol. 63 (2008), p.200.

Google Scholar

[3] L. Robeson: Curr. Opin. Solid St. M. Vol. 4 (1999), p.549.

Google Scholar

[4] H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, and A. Mushtaq: Chem. Eng. Technol. Vol. 36 (2013), p.1838.

DOI: 10.1002/ceat.201300342

Google Scholar

[5] S. Feng, J. Ren, H. Li, K. Hua, X. Li, and M. Deng: J. Energ. Chem. Vol. 22 (2013), p.837.

Google Scholar

[6] M.A. Semsarzadeh and B. Ghalei: J Membrane Sci. Vol. 401-402 (2012), p.97.

Google Scholar

[7] L.M. Robeson, B.D. Freeman, D.R. Paul, and B.W. Rowe: J Membrane Sci. Vol. 341 (2009), p.178.

Google Scholar

[8] A. Ahmad, A. Abdulkarim, B. Ooi, and S. Ismail: Chem. Eng. J. Vol. 223 (2013), p.246.

Google Scholar

[9] S. Kilic, S. Michalik, Y. Wang, J.K. Johnson, R.M. Enick, and E.J. Beckman: Macromolecules. Vol. 40 (2007), p.1332.

Google Scholar

[10] H. Sanaeepur, A.E. Amooghin, A. Moghadassi, and A. Kargari: Sep. Purif. Technol. Vol. 80 (2011), p.499.

Google Scholar

[11] J. Han, W. Lee, J.M. Choi, R. Patel, and B. -R. Min: J Membrane. Sci. Vol. 351 (2010), p.141.

Google Scholar

[12] S. Rafiq, Z. Man, A. Maulud, N. Muhammad, and S. Maitra: J Membrane. Sci. Vol. 378 (2011), p.444.

Google Scholar

[13] G. Socrates: Infrared and Raman Characteristic Group Frequencies: Tables and Charts: Wiley, (2004).

Google Scholar

[14] K. Deshmukh, J. Ahmad, and M.B. Hägg: Ionics. Vol. 20 (2014), p.957.

Google Scholar

[15] J.R. Fried: Polymer Science & Technology: Pearson Education Inc, (2003).

Google Scholar

[16] K.R. Devi and R. Madivanane: Eng Sci and Technol: An International Journal (ESTIJ). Vol. 2 (2012), p.795.

Google Scholar

[17] A. Mushtaq, H. Mukhtar, and A.M. Shariff: J Appl. Sci. Eng. Technol. Vol. 7 (2014), p.1811.

Google Scholar

[18] N. Bolong, A.F. Ismail, M.R. Salim, and T. Matsuura: J. Teknol. Vol. 49(F) (2008), p.123.

Google Scholar