Raman Scattering Characterization of MoxW1-xS2 Layered Mixed Crystals

Article Preview

Abstract:

A systematic study of a series of MoxW1-xS2 layered mixed crystals, with 0 ≥ x ≤ 1, grown by the chemical vapor transport method were carried out by using Raman scattering measurements. The peaks of the two dominant first-order Raman-active modes, A1g and E2g1 , and several second-order bands have been observed in the range of 150-500 cm-1. The peaks corresponding to A1g mode show one-mode type behavior while the peaks of E2g1 mode demonstrate two-mode type behavior for the entire series. The results can be explained on the basis of the atomic displacements for each mode. For A1g mode only sulfur atoms vibrate and this give rise to a one-mode type behavior for the mixed crystals. For E2g1 mode metal atoms also vibrate as well as sulfur atoms, the mass difference of the vibrating Mo and W cations causes the two-mode type behavior of E2g1 mode. In addition, the observation of largest asymmetry and broadening of A1g mode for Mo0.5W0.5S2 has been attributed to random alloy scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

595-601

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Wilson andA.D. Yoffe: Adv. Phys. 18, 193 (1969).

Google Scholar

[2] S. K. Eugene and P. L. Hawrylak: Solid State Commun. 152, 909 (2012).

Google Scholar

[3] J.M. Martin, C. Donnet and J.L. Mogne: Phys. Rev. B 48, 10583 (1993).

Google Scholar

[4] M. Yanagisawa: Wear168, 167 (1993).

Google Scholar

[5] P.D. Fleuschauer: Thin Solid Films154, 309 (1987).

Google Scholar

[6] H.Z. Tributsch: Naturf. a32, 972 (1977).

Google Scholar

[7] K.K. Kam and B.A. Parkinson:J. Phys. Cem. 86, 463 (1982).

Google Scholar

[8] S.J. Li,J.C. Bernede, J. Pouzet andM. Jamali:J. Phys.: Condens. Matter8, 2291 (1996).

Google Scholar

[9] A. Jager-Waldau, M. Lux-Steiner, R. Jager-Waldau, R. Burkhardt and E. Bucher: Thin Solid Films 189, 339 (1990).

DOI: 10.1016/0040-6090(90)90463-n

Google Scholar

[10] J. M. Yun, Y .J. Noh, J. S. Yeo, Y. J. Go, S. I. Na, H. G. Jeong, J. H. Kim, S. Y. Lee, S. S. Kim, H. Y. Koo, T. W. Kim and D. Y. Kim: J. Mater. Chem. C 1, 3777 (2013).

Google Scholar

[11] P. Grange andB. Delmon:J. Less-Common Met. 36, 353 (1974).

Google Scholar

[12] W. M. R. Divigalpitiya, S. R. Morrison and R. F. Frindt: Thin Solid Films186, 177 (1990).

Google Scholar

[13] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang: Angew. Chem., Int. Ed., 50, 11093 (2011).

DOI: 10.1002/anie.201106004

Google Scholar

[14] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis: Nat. Nanotechnol. 6, 147 (2011).

Google Scholar

[15] A. Ayari, E. Cobas, O. Ogundadegbe and M. S. Fuhrer:J. Appl. Phys. 101, 014507 (2007).

Google Scholar

[16] X. Huang, Z. Zeng and H. Zhang: Chem. Soc. Rev. 42, 1934 (2013).

Google Scholar

[17] M. Chhowalla, H. S. Shin, G. Eda, L. -J. Li, K. P. Loh and H. Zhang: Nat. Chem. 5, 263 (2013).

Google Scholar

[18] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. L. Y. Tok, Q. Zhang and H. Zhang: Small8, 63 (2012).

Google Scholar

[19] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang: ACS Nano6, 74 (2012).

Google Scholar

[20] Y. Zhang, J. Ye, Y. Matsuhashi and Y. Iwasa: Nano Lett. 12, 1136 (2012).

Google Scholar

[21] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis and E. Bucher: Appl. Phys. Lett. 84, 3301 (2004).

DOI: 10.1063/1.1723695

Google Scholar

[22] S.K. Srivastava, T.K. Mandal, B.K. Samantaray: Synth. Met. 90, 135 (1997).

Google Scholar

[23] C. Thomazeau, C. Geantet, M. Lacroix, V. Harlé, S. Benazeth, C. Marhic and M. Danot: J. Solid State Chem. 160, 147 (2001).

DOI: 10.1006/jssc.2001.9208

Google Scholar

[24] C. Thomazeau, C. Geantet, M. Lacroix, M. Danot, V. Harlé and P. Raybaud: Appl. Catal. A: Gen. 322, 92 (2007).

Google Scholar

[25] M. Nath, K. Mukhopadhyay and C.N.R. Rao: Chem. Phys. Lett. 352, 163 (2002).

Google Scholar

[26] T.C. Damen, S.P.S. Porto, B. Tell: Phys. Rev. 142, 570 (1966).

Google Scholar

[27] R. Loudon: Adv. Phys. 13, 423, (1964).

Google Scholar

[28] T. Sekine, T. Nakashizu, K. Toyoda, K. Uchinokura and E. Matsuura: Solid State Commun. 35, 371 (1980).

DOI: 10.1016/0038-1098(80)90518-9

Google Scholar

[29] S. OuldSaadHamady, N. Dupuis, J. Décobert and A. Ougazzaden:J. Cryst. Growth, 310, 4741 (2008).

Google Scholar

[30] M. Ishii and M. Saeki: Solid State Commun. 67, 895, (1988).

Google Scholar

[31] I.F. Chang and S.S. Mitra: Adv. Phys. 20, 359 (1971).

Google Scholar

[32] N.M. Gasanly and N.S. Yuksek, Acta Phys. Pol. A, 108, 997 (2005).

Google Scholar