Boundary Element Approach in Impedance Cloaking Problem

Article Preview

Abstract:

The cloaking problem is considered for a 2-D wave scattering model in an unbounded homogenous medium containing an impenetrable covered (cloaked) boundary. The control is a surface impedance which enters the boundary condition as a coefficient. The problem is reduced to the inverse extremal problem of choosing the surface impedance. The solvability of the original scattering problem for 2-D Helmholtz equation and of the extremal problem is proved. Optimality system describing the necessary extremum conditions is derived. The algorithm for numerical solving of the control problem based on the optimality system and boundary element method is designed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-528

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Pendry, D. Schurig, D.R. Smith, Controlling elecromagnetic fields, Science. 312 (2006) 1780-1782.

DOI: 10.1126/science.1125907

Google Scholar

[2] H. Chen, B. -I. Wu, B. Zhang, J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99 (2007) 063903.

DOI: 10.1103/physrevlett.99.149901

Google Scholar

[3] Yu. I. Bobrovnitskii, Scientific principles of acoustic stealth. Doklady Physics. 57 (2012) 18-22.

DOI: 10.1134/s1028335812010028

Google Scholar

[4] Yu. I. Bobrovnitskii, A nonscattering coating for a cylinder. Acoustical Physics. 54 (2008) 758-768.

Google Scholar

[5] G.V. Alekseev, Optimization in problems of material-body cloaking using the wave-flow method. Doklady Physics. 58 (2013) 147-151.

DOI: 10.1134/s1028335813040071

Google Scholar

[6] G.V. Alekseev, Control of boundary impedance in two-dimensional material-body cloaking by the wave flow method. Comput. Math. Math. Phys. 53 (2013) 1853-1869.

DOI: 10.1134/s0965542513120014

Google Scholar

[7] G.V. Alekseev, Cloaking of material objects by controlling the impedance boundary condition for Maxwell's equations. Doklady Physics. 58 (2013) 482-486.

DOI: 10.1134/s1028335813110025

Google Scholar

[8] G. V. Alekseev, A. V. Lobanov, Stability estimates for the solutions to inverse extremal problems for the Helmholtz equation. J. Applied and Industrial Mathematics. 7 (2013) 302-312.

DOI: 10.1134/s1990478913030034

Google Scholar

[9] G.V. Alekseev, V.A. Levin, Optimization method of searching parameters of an inhomogeneous liquid medium in the acoustic cloaking problem. Doklady Physics. 59 (2014) 89-93.

DOI: 10.1134/s1028335814020013

Google Scholar

[10] G.V. Alekseev, Cloaking via impedance boundary condition for the 2-D Helmholtz equation. Applicable Analysis. 93 (2014) 254-268.

DOI: 10.1080/00036811.2013.768340

Google Scholar

[11] Ju. Yu. Fershalov, T.V. Sazonov, Experimental research of the nozzles. Advanced Materials Research. 915-916 (2014) 345-348.

DOI: 10.4028/www.scientific.net/amr.915-916.345

Google Scholar

[12] M. Yu. Fershalov, A. Yu. Fershalov, Ju. Yu. Fershalov, Calculation reactivity degree for axial low-account turbines with small emergence angles of nozzle devices. Advanced Materials Research. 915-916 (2014) 341-344.

DOI: 10.4028/www.scientific.net/amr.915-916.341

Google Scholar

[13] S.A. Sauter, C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, vol. 39, Springer Berlin Heidelberg, (2011).

DOI: 10.1007/978-3-540-68093-2

Google Scholar