Mixed-Mode Testing for an Asymmetric Four-Point Bending Configuration of Polyurethane Foams

Article Preview

Abstract:

Many efforts have been made recently to determine the fracture toughness of different types of foams in static and dynamic loading conditions. Taking into account that there is no standard method for the experimental determination of the fracture toughness of plastic foams, different procedures and specimens were used. This paper presents the polyurethane foam fracture toughness results obtained experimentally for three foam densities. Asymmetric four-point bending specimens were used for determining fracture toughness in mode I and in a mixed one, and also the influence of the loading speed and geometry of the specimen were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-244

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.J. Gibson, M.F. Ashby, Cellular Solids, Structure and Properties, second ed., Cambridge University Press, Cambridge, (1997).

Google Scholar

[2] N.J. Mills, Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide, Elsevier , Oxford, (2007).

Google Scholar

[3] L. Marsavina, Fracture Mechanics of Cellular Solids, in: H. Altenbach, A. Ochsner (Eds. ), Cellular and porous materials in structures and processes, Springer, Wien, 2010, pp.1-46.

DOI: 10.1007/978-3-7091-0297-8_1

Google Scholar

[4] C.W. Fowlkes, Fracture toughness of a rigid polyurethane foam, Int. J. Fract. 10 (1974) 99-108.

DOI: 10.1007/bf00955084

Google Scholar

[5] G.M. Viana, L.A. Carlsson, Mechanical properties and fracture characterisation of cross-linked PVC foams, J. Sandw. Struct. Mater. 4 (2002) 99-113.

Google Scholar

[6] M. Burman, Fatigue crack initiation and propagation in sandwich structures, Report No. 98-29, Stockholm (1998).

Google Scholar

[7] M.E. Kabir, M.C. Saha, S. Jeelani, Tensile and fracture behavior of polymer foams, Mat. Sci. Eng. A429 (2006) 225-235.

Google Scholar

[8] S. Choi, B.V. Sankar, Fracture toughness of carbon foam, J. Compos. Mater. 37 (2003) 2101-2116.

Google Scholar

[9] N.A. Fleck, O.B. Olurin, C. Chen, M.F. Ashby, The effect of hole size upon the strength of metallic and polymeric foams, J. Mech. Physics Solids 49 (2001) 2015 – (2030).

DOI: 10.1016/s0022-5096(01)00033-3

Google Scholar

[10] O.B. Olurin, N.A. Fleck, M.F. Ashby, Deformation and fracture of aluminium foams, Mat. Sci. Eng. A291 (2000) 136-146.

DOI: 10.1016/s0921-5093(00)00954-0

Google Scholar

[11] McIntyre, G.E. Anderton, Fracture properties of a rigid PUR foam over a range of densities, Polymer 20 (1979) 247-253.

DOI: 10.1016/0032-3861(79)90229-5

Google Scholar

[12] M. Danielsson, Toughened rigid foam core material for use in sandwich construction, Cell. Polym. 15 (1996) 417-435.

Google Scholar

[13] ASTM D5045-99: Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials.

DOI: 10.1520/d5045-99

Google Scholar

[14] M.Y. He, J.W. Hutchinson, Asymmetric four-point crack specimen, J. Appl. Mech. 67 (2000) 207–209.

Google Scholar

[15] M.R. Ayatollahi, M.R.M. Aliha, H. Saghafi, An improved semi-circular bend specimen for investigating mixed mode brittle fracture, Eng. Fracture Mech. 78 (2011) 110–123.

DOI: 10.1016/j.engfracmech.2010.10.001

Google Scholar

[16] L. Marsavina, D.M. Constantinescu, E. Linul, D.A. Apostol, T. Voiconi, T. Sadowski, Refinements on fracture toughness of PUR foams, Eng. Fracture Mech. in press, http: /dx. doi. org/10. 1016/j. engfracmech. 2013. 12. 006.

DOI: 10.1016/j.engfracmech.2013.12.006

Google Scholar

[17] A.R. Shahani, S.A. Tabatabaei, Computation of mixed mode stress intensity factors in a four-point bend specimen, Appl. Math. Modell. 32 (2008) 1281–1288.

DOI: 10.1016/j.apm.2007.04.001

Google Scholar