New Polymer Assembles with Potential Use as Solid Electrolytes Type Membranes

Article Preview

Abstract:

Solid polymer electrolyte (SPE) membranes with varying composition ratios were prepared from poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA) and poly(metacrylic acid) (PMMA). The acrylic acid monomer with cross-linker was first blended with PVA polymer. A free radical polymerization was then carried out to form an alkaline polymer electrolyte. The solution casting method was used to form the solid polymer membranes. The solid polymer membranes were characterized by FT-IR spectroscopy, SEM morphology analysis and electrochemical impedance spectroscopy. The results showed that at room temperature the highest ionic conductivity for the PVA/PAA/KOH solid polymer membrane electrolyte system was 4.54·10-8 Ω-1 cm-1. The PVA/PAA polymer membrane had good mechanical strength and ductility and would be a suitable polymer membrane electrolyte for the alkaline batteries and other electrochemical systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-250

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – a review, J. Membr Sci. 259 (1–2) (2005) 10–26.

DOI: 10.1016/j.memsci.2005.01.035

Google Scholar

[2] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114 (2003) 32–53.

DOI: 10.1016/s0378-7753(02)00542-6

Google Scholar

[3] K.A. Mauritz, R.B. Moore, State of Understanding of Nafion, Chem. Rev. 104 (10) (2004) 4535–85.

Google Scholar

[4] R. Basnayake, G.R. Peterson, D.J. Casadonte, C. Korzeniewski, Hydration and Interfacial Water in Nafion Membrane Probed by Transmission Infrared Spectroscopy, J. Phys. Chem. B 110 (47) (2006) 23938–23943.

DOI: 10.1021/jp064121i

Google Scholar

[5] N. Carretta, V. Tricoli, F. Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation, J. Membr. Sci. 166 (2) (2000) 189–197.

DOI: 10.1016/s0376-7388(99)00258-6

Google Scholar

[6] M. Sankir, Y.S. Kim, B.S. Pivovar, J.E. McGrath, Proton exchange membrane for DMFC and H2/air fuel cells: Synthesis and characterization of partially fluorinated disulfonated poly(arylene ether benzonitrile) copolymers, J. Membr. Sci. 299 (1–2) (2007).

DOI: 10.1016/j.memsci.2007.04.004

Google Scholar

[7] H.S. Lee, A.S. Badami, A. Roy, J.E. McGrath, Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cells. I. Copolymer synthesis and fundamental properties, J. Polym. Sci. Part A Polym. Chem. 45 (21) (2007).

DOI: 10.1002/pola.22238

Google Scholar

[8] C.G. Cho, Y.S. Kim, X. Yu, M. Hill, J.E. McGrath, Synthesis and characterization of poly(arylene ether sulfone) copolymers with sulfonimide side groups for a proton-exchange membrane, J. Polym. Sci. Part A Polym. Chem. 44 (20) (2006) 6007–6014.

DOI: 10.1002/pola.21565

Google Scholar

[9] M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allcock, Synthesis of Polyphosphazenes with Sulfonimide Side Groups, Macromolecules 35 (17) (2002) 6490–6493.

DOI: 10.1021/ma020330z

Google Scholar

[10] Y. Yang, S. Holdcroft, Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes, Fuel Cells 5 (2) (2005) 171–186.

DOI: 10.1002/fuce.200400058

Google Scholar

[11] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.W. Choe, L.S. Ramanathan, S. Yu, B.C. Benicewicz, Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications, Fuel Cells 5 (2) (2005).

DOI: 10.1002/fuce.200400067

Google Scholar

[12] H.J. Kim, T.H. Lim, PBI Derivatives: Polymer Electrolyte Fuel Cell Membrane for High Temperature Operation, J. Ind. Eng. Chem. 10 (7) (2004) 1081–1085.

Google Scholar

[13] R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics 118 (3–4) (1999) 287–299.

DOI: 10.1016/s0167-2738(98)00466-4

Google Scholar

[14] J.A. Asensio, S. Borros, P. Gomez-Romero, Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2, 5-benzimidazole) Membranes, J. Electrochem. Soc. 151 (2) (2004) A304–A310.

DOI: 10.1149/1.1640628

Google Scholar

[15] J. Lobato, P. Canizares, M.A. Rodrigo, J.J. Linares, G. Manjavacas, Synthesis and characterisation of poly[2, 2-(m-phenylene)-5, 5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs, J. Membr. Sci. 280 (2006) 351–362.

DOI: 10.1016/j.memsci.2006.01.049

Google Scholar

[16] J. Lobato, P. Canizares, M.A. Rodrigo, J.J. Linares, J.A. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, J. Membr. Sci. 306 (1–2) (2007) 47–55.

DOI: 10.1016/j.memsci.2007.08.028

Google Scholar

[17] D.T. Glatzhofer, M.J. Erickson, R. Frech, F. Yepez, J.E. Furneaux, Polymer electrolytes based on cross-linked linear poly(ethylenimine) hydrochloride/phosphoric acid systems, Solid State Ionics, 176 (39–40) (2005) 2861–2865.

DOI: 10.1016/j.ssi.2005.09.055

Google Scholar

[18] A.G. Giffin, F.Y. Castillo, R. Frech, T.D. Glatzhofer, C.M. Burba, Spectroscopic investigation of proton-conducting, cross-linked linear poly(ethylenimine) hydrochloride membranes, Polymer, 50 (2009) 171-176.

DOI: 10.1016/j.polymer.2008.10.051

Google Scholar

[19] B. Smitha, S. Sridhar, A.A. Khan, Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells, Macromol. 37 (2004) 2233-2239.

DOI: 10.1021/ma0355913

Google Scholar

[20] L.E. Karlsson, B. Wesslén, P. Jannasch, Water absorption and proton conductivity of sulfonated acrylamide copolymers, Electrochem. Acta, 47 (20) (2002) 3269–3275.

DOI: 10.1016/s0013-4686(02)00244-x

Google Scholar

[21] A.S. Michaels, R.G. Miekka, Polycation-Polyanion Complexes: Preparation and Properties of Poly-(Vinylbenzyltrimethylammonium) Poly-(Styrenesulfonate), J. Phys. Chem., 65 (1961) 1765–1773.

DOI: 10.1021/j100827a020

Google Scholar

[22] A.S. Michaels, Polyelectrolyte Complexes, Ind. Eng. Chem., 57 (1965) 32–40.

Google Scholar

[23] J.J. Shieh, Y. M. Huang, Pervaporation with chitosan membranes II. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol-water mixtures, J. Membr. Sci., 127 (2) (1997).

DOI: 10.1016/s0376-7388(96)00279-7

Google Scholar

[24] C.C. Yang, Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte, J. Power Sources 109 (2002) 22–31.

DOI: 10.1016/s0378-7753(02)00038-1

Google Scholar

[25] C.C. Yang, S.J. Lin, Alkaline composite PEO–PVA-glass-fibre-mat polymer electrolyte for Zn-air battery, J. Power Sources 112 (2002) 497–503.

DOI: 10.1016/s0378-7753(02)00438-x

Google Scholar

[26] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn-air batteries, J. Appl. Eelectrochem. 33 (2003) 777–784.

Google Scholar

[27] C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, The possible use of polymer gel electrolytes in nickel/metal hydride battery, Solid State Ionics 148 (2002) 487–492.

DOI: 10.1016/s0167-2738(02)00092-9

Google Scholar

[28] C.C. Yang, S.J. Lin, G.M. Wu, Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes, Mat. Chem. and Physics 92 (2005) 251–255.

DOI: 10.1016/j.matchemphys.2005.01.022

Google Scholar

[29] P. Vasilescu, O.C. Pârvulescu, C. Jinescu, Un model matematic al procesului de schimb ionic în strat fix, Rev. Chim. 49 (1998) 829-836.

Google Scholar

[30] T. Dobre, L. Calotă, O.C. Pârvulescu, G. Iavorschi, Use of Experimental Breakthrough Curves for Ion Exchange Process Optimization, U.P.B. Sci. Bull. 68 (2006) 13-26.

Google Scholar

[31] D.I. Văireanu, I. Maior, A. Grigore, D. Săvoiu, The Evaluation of Ionic Conductivity in Polymer Electrolyte Membranes, Rev. Chim. 59 (10) (2008) 1140–1142.

DOI: 10.37358/rc.08.10.1984

Google Scholar

[32] N. Duţeanu, K. Scott, N. Vaszilcsin, A. Kellenberger, Contribuţii la îmbunătăţirea performanţelor pilelor de combustie directă cu metanol, Rev. Chim., 58 (12) (2007) 1207–1211.

Google Scholar

[33] T.A. Zawodzinski Jr,. M. Neeman, L.O. Sillerud, S. Gottesfeld, Determination of Water Diffusion Coefficients in Perfluoro-sulfonate Ionomeric Membranes, J. Phys. Chem., 95 (15) (1991) 6040–6044.

DOI: 10.1021/j100168a060

Google Scholar

[34] X. Yuan, H. Wang, J.C. Sun, J. Zhang, AC Impedance Technique in PEM Fuel Cell Diagnosis – A review, Internat. J. Hydrogen Energy, 32 (2007) 4365–4380.

DOI: 10.1016/j.ijhydene.2007.05.036

Google Scholar

[35] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, J. Membr. Sci. 275 (2006) 127–133.

DOI: 10.1016/j.memsci.2005.09.012

Google Scholar