[1]
A. D'Amore, F. Caputo, L. Grassia, M. Zarrelli, L. Grassia, Numerical evaluation of structural relaxation-induced stresses in amorphous polymers, Composites Part A Applied Science and Manufacturing, 37 (4) (2006) 556-564.
DOI: 10.1016/j.compositesa.2005.05.011
Google Scholar
[2]
L. Grassia, A. D'Amore, Residual Stresses in Amorphous Polymers, Macromolecular Symposia 228 (1) (2005) 1-15.
Google Scholar
[3]
L. Grassia, A. D'Amore, Thermal residual stresses in amorphous thermoplastic polymers, AIP Conference Proceedings 1255 (2010) 414-416.
DOI: 10.1063/1.3455655
Google Scholar
[4]
L. Grassia, A. D'Amore, Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material, Mechanics of Time-Dependent Materials 17 (1) (2013) 1-13.
DOI: 10.1007/s11043-012-9190-0
Google Scholar
[5]
S.L. Simon, J.K. Gillham, Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material, Journal of Applied Polymer Science 47 (3) (1993) 461-485.
DOI: 10.1002/app.1993.070470308
Google Scholar
[6]
A.T. DiBenedetto, Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states, Journal of Applied Polymer and Science Part B Polym. Phys. 25 (9) (1987) 1949-(1969).
DOI: 10.1002/polb.1987.090250914
Google Scholar
[7]
F. Caputo, G. Lamanna, L. Lanzillo, A. Soprano, Numerical investigation on LEFM limits under LSY conditions, Key Engineering Materials 577-578 (2014) 381-384.
DOI: 10.4028/www.scientific.net/kem.577-578.381
Google Scholar
[8]
F. Caputo, G. Lamanna, A. Soprano, Residual Strength Improvement of an Aluminium Alloy Cracked Panel, The Open Mechanical Engineering Journal 7 (2013) 90-97.
DOI: 10.2174/1874155x20131023001
Google Scholar
[9]
G. Lamanna, F. Caputo, A. Soprano, Handling of composite-metal interface in a hybrid mechanical coupling, AIP Conference Proceedings 1459 (2012) 353-355.
DOI: 10.1063/1.4738494
Google Scholar
[10]
F. Caputo, A. De Luca, G. Lamanna, A. Soprano, Numerical Study of a Plate with a Pre-Cracked Circular Notch, Key Engineering Materials 627 (2015) 101-104.
DOI: 10.4028/www.scientific.net/kem.627.101
Google Scholar
[11]
G. Lamanna, L. Sartore, A. Basile, Structure and mechanics of soft PSAs (pressure sensitive adhesives) AIP Conference Proceedings 1599 (2014) 514-517.
DOI: 10.1063/1.4876891
Google Scholar
[12]
G. Lamanna, A. Basile, Mechanics of soft PSAs (pressure sensitive adhesives) The Open Materials Science Journal 7 (1) (2013) 23-27.
DOI: 10.2174/1874088x01307010023
Google Scholar
[13]
F.C. Calheiros, R.R. Braga, Y. Kawano, R.Y. Ballester, Relationship between contraction stress and degree of conversion in restorative composites, Dental Materials 20 (10) (2004) 939-946.
DOI: 10.1016/j.dental.2004.03.003
Google Scholar
[14]
L. Grassia, A. D'Amore, Finite element calculation of residual stress in dental restorative material, AIP Conference Proceedings 1459 (2012) 312-315.
DOI: 10.1063/1.4738480
Google Scholar
[15]
M. Zarrelli, I.K. Partridge, A. D'Amore, Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure, Composites Part A: Applied Science and Manufacturing 37 (4) 565-570.
DOI: 10.1016/j.compositesa.2005.05.012
Google Scholar