Modelling of Residual Stresses in Dental Restorative Polymer Based Materials

Article Preview

Abstract:

A methodology for residual stresses calculations is proposed. Common photo-curing dental restorative materials under different C-factors are considered as case studies. Reaction kinetics, curing shrinkage, and viscoelasticity map were required as input data on a structural FE solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that stresses build-up due to the thermal contraction (after the completion of restoration) are comparable with those emerging due to thermal shrinkage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D'Amore, F. Caputo, L. Grassia, M. Zarrelli, L. Grassia, Numerical evaluation of structural relaxation-induced stresses in amorphous polymers, Composites Part A Applied Science and Manufacturing, 37 (4) (2006) 556-564.

DOI: 10.1016/j.compositesa.2005.05.011

Google Scholar

[2] L. Grassia, A. D'Amore, Residual Stresses in Amorphous Polymers, Macromolecular Symposia 228 (1) (2005) 1-15.

Google Scholar

[3] L. Grassia, A. D'Amore, Thermal residual stresses in amorphous thermoplastic polymers, AIP Conference Proceedings 1255 (2010) 414-416.

DOI: 10.1063/1.3455655

Google Scholar

[4] L. Grassia, A. D'Amore, Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material, Mechanics of Time-Dependent Materials 17 (1) (2013) 1-13.

DOI: 10.1007/s11043-012-9190-0

Google Scholar

[5] S.L. Simon, J.K. Gillham, Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material, Journal of Applied Polymer Science 47 (3) (1993) 461-485.

DOI: 10.1002/app.1993.070470308

Google Scholar

[6] A.T. DiBenedetto, Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states, Journal of Applied Polymer and Science Part B Polym. Phys. 25 (9) (1987) 1949-(1969).

DOI: 10.1002/polb.1987.090250914

Google Scholar

[7] F. Caputo, G. Lamanna, L. Lanzillo, A. Soprano, Numerical investigation on LEFM limits under LSY conditions, Key Engineering Materials 577-578 (2014) 381-384.

DOI: 10.4028/www.scientific.net/kem.577-578.381

Google Scholar

[8] F. Caputo, G. Lamanna, A. Soprano, Residual Strength Improvement of an Aluminium Alloy Cracked Panel, The Open Mechanical Engineering Journal 7 (2013) 90-97.

DOI: 10.2174/1874155x20131023001

Google Scholar

[9] G. Lamanna, F. Caputo, A. Soprano, Handling of composite-metal interface in a hybrid mechanical coupling, AIP Conference Proceedings 1459 (2012) 353-355.

DOI: 10.1063/1.4738494

Google Scholar

[10] F. Caputo, A. De Luca, G. Lamanna, A. Soprano, Numerical Study of a Plate with a Pre-Cracked Circular Notch, Key Engineering Materials 627 (2015) 101-104.

DOI: 10.4028/www.scientific.net/kem.627.101

Google Scholar

[11] G. Lamanna, L. Sartore, A. Basile, Structure and mechanics of soft PSAs (pressure sensitive adhesives) AIP Conference Proceedings 1599 (2014) 514-517.

DOI: 10.1063/1.4876891

Google Scholar

[12] G. Lamanna, A. Basile, Mechanics of soft PSAs (pressure sensitive adhesives) The Open Materials Science Journal 7 (1) (2013) 23-27.

DOI: 10.2174/1874088x01307010023

Google Scholar

[13] F.C. Calheiros, R.R. Braga, Y. Kawano, R.Y. Ballester, Relationship between contraction stress and degree of conversion in restorative composites, Dental Materials 20 (10) (2004) 939-946.

DOI: 10.1016/j.dental.2004.03.003

Google Scholar

[14] L. Grassia, A. D'Amore, Finite element calculation of residual stress in dental restorative material, AIP Conference Proceedings 1459 (2012) 312-315.

DOI: 10.1063/1.4738480

Google Scholar

[15] M. Zarrelli, I.K. Partridge, A. D'Amore, Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure, Composites Part A: Applied Science and Manufacturing 37 (4) 565-570.

DOI: 10.1016/j.compositesa.2005.05.012

Google Scholar